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In scenarios such as web programming, where code is linked together from multiple sources, object capability
patterns (OCPs) provide an essential safeguard, enabling programmers to protect the private state of their

objects from corruption by unknown and untrusted code. However, the bene�ts of OCPs in terms of program

veri�cation have never been properly formalized. In this paper, building on the recently developed Iris

framework for concurrent separation logic, we develop OCPL, the �rst program logic for compositionally

specifying and verifying OCPs in a language with closures, mutable state, and concurrency. The key idea

of OCPL is to account for the interface between veri�ed and untrusted code by adopting a well-known

idea from the literature on security protocol veri�cation, namely robust safety. Programs that export only

properly wrapped values to their environment can be proven robustly safe, meaning that their untrusted

environment cannot violate their internal invariants. We use OCPL to give the �rst general, compositional,

and machine-checked specs for several commonly-used OCPs—including the dynamic sealing, membrane, and

caretaker patterns—which we then use to verify robust safety for representative client code. All our results are

fully mechanized in the Coq proof assistant.

1 INTRODUCTION
Suppose you have a mutable reference ` whose contents you care about, meaning that you want to

impose some invariant on it (e.g., ` always points to an even number). Suppose further that you

want to share access to ` with code you did not write and that you do not trust to preserve the

invariant on `. To ensure the invariant on ` is maintained, you therefore do not want to pass the

untrusted code the reference ` directly. Instead, you might construct a read-only wrapper w as

follows:

readonly , λr . λ . !r w , readonly `

Here, readonly transforms a reference r into a thunk that, when applied, returns the current contents

of r . The expression w applies readonly to our reference of interest `, constructing a function for

reading `’s contents. You can now pass w to untrusted code without worrying about it corrupting

your invariant on `.
Wrappers like w are often called object capabilities, and the wrapper construction function

readonly is a very simple example of an object capability pattern (OCP) (Miller et al. 2000). Although

OCPs date back at least to the 1970s (Morris 1973), they have gained increased currency in recent

years, both in new languages centered around object capabilities (Miller et al. 2000; Mettler et al.

2010; Spiessens and Roy 2004; Stiegler and Miller 2006) and in the context of web programming,

where interfacing with untrusted code is commonplace. Web sandboxing systems like Yahoo!’s

ADsafe (Crockford 2008; Politz et al. 2014) and Google’s Caja (Miller et al. 2008), for example,

elaborate untrusted JavaScript source code into an ostensibly safe subset of JavaScript while

introducing wrappers that attenuate access to JavaScript libraries. Caja relies on the so-called

membrane pattern, which automatically wraps all objects crossing to untrusted, sandboxed code so

that access to the underlying objects is appropriately restricted.
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OCPs are believed to provide crucial security guarantees because, in a language like JavaScript,

objects provide essentially no data abstraction on their own—the only way to enforce data abstrac-

tion is to hide private state in the environment of a closure (e.g., as ` was hidden in the environment

of readonly ` in the example above). So OCPs, which use closures to mediate access to private state

in a systematic way, are one of the few e�ective mechanisms available in a language like JavaScript

for enforcing data abstraction in the presence of possibly malicious code.

Unfortunately, despite the ubiquity of OCPs in modern web programming, remarkably little

attention has been paid to the question of what exactly are the security guarantees that such OCPs

are supposed to provide, and how might we prove that they actually provide them. Even in the

case of the extremely basic readonly pattern shown above, it is not at all obvious what is the “right”

formal speci�cation for readonly. What, in particular, are the formal conditions on ` that are needed

to guarantee that readonly ` can be “safely” shared with untrusted code? If ` merely points to an

integer, no conditions may be necessary, but what if ` points to a closure or some other higher-order

object? How do we know that giving readonly access to ` will not indirectly give untrusted code a

way of gaining full access and violating important invariants maintained by the user of this OCP?

The most recent, state-of-the-art attempt to grapple with these types of questions is due to

Devriese et al. (2016). They build a Kripke logical relations model for reasoning about object

capabilities in a language with higher-order state, and they use their model to verify several

concrete examples of capability-wrapped user code. In each case, they demonstrate that invariants

on the private state of the user code are preserved even when the user code is shared with unknown

attacker code. However, their model is limited in that it provides no way to compositionally specify
what an OCP does, and it provides no clear speci�cation of the general property that a piece of

user code must satisfy in order to be safely shareable with untrusted code. Furthermore, they only

consider very simple capability patterns, none as complex as, say, the aforementioned membrane

pattern.

In this paper, we present OCPL (a Logic for OCPs), the �rst formal system for compositionally
specifying and verifying the security guarantees provided by OCPs, in the context of a simple but

representative programming language with higher-order functions, state, and concurrency.
1

In

contrast to prior work, OCPL enables one to reason modularly about both OCP implementations

and user code that depends on them, and to specify a general property on user code that ensures

such code can be safely shared with untrusted code without having its internal invariants violated.

We use OCPL to reason about several commonly-used OCPs, including the dynamic sealing (sealer-

unsealer), membrane, and caretaker patterns, and in so doing, provide the �rst formal explanation

of what these OCPs achieve.

OCPL is a program logic derived from Iris, a recently developed framework for higher-order

concurrent separation logic (Jung et al. 2015, 2016; Krebbers et al. 2017a). Iris was originally proposed

as a very general logic with a few simple primitives, using which one can derive advanced proof

principles from a variety of modern separation logics as needed. Moreover, Krebbers et al. (2017b)

have recently developed a powerful new proof mode for Iris in the Coq proof assistant. The Iris
proof mode enables one to carry out interactive, tactical, machine-checked proofs about programs

in the Iris logic (embedded in Coq) in much the same way as one normally carries out interactive

tactical proofs when working in the meta-logic of Coq itself. By virtue of building OCPL on top of

Iris, we inherit the �exibility of the existing Iris framework, as well as its support for mechanizing

proofs about programs in Coq. All our results and examples are, in fact, fully veri�ed in Coq.
2

1
Despite the name, object capabilities are not fundamentally limited to object-oriented programming languages.

2
The Coq formalization is available online (OCPL 2017).
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The key idea in OCPL is how it characterizes the interface between veri�ed user code and

untrusted code, via the concept of a “low-integrity value” (or low value for short) adapted from

the literature on veri�cation of security protocols (Abadi 1999). Roughly speaking, a low value

is a value that can be safely shared with untrusted code, such as the closure wrappers returned

by OCPs. More precisely, a low value is a value from which no code can possibly extract a direct

reference to private state. To formalize this notion, we employ a logical relation, which is easy to

de�ne using Iris’s built-in support for guarded recursive predicates. Then, with the idea of low

values in hand, it becomes clear how to specify when a piece of user code can be safely linked with

untrusted code—namely, when the only values passed back and forth between them are low values.

To make things concrete, let us return to our motivating example. Using the notion of low values,

we can prove the following speci�cation for the readonly pattern:

∀`. {>} !` {x . lowvalx } ⇒ {>} readonly ` { f . lowval f }

The premise of this spec says that, in order to apply readonly to a location `, we must �rst prove

that dereferencing ` always produces a low value. (This makes sense because once we pass the

read-only wrapper to untrusted code, it may invoke the wrapper and obtain the contents of ` at

any time.) The payo� is in the conclusion: the closure returned by readonly ` is itself a low value

and may therefore be safely shared with untrusted code.

Given this speci�cation for readonly, let us now consider a client of readonly that wishes to

maintain an invariant on its private (i.e., high-integrity) state:

usetwo , let r = ref 2 in

letw = readonly r in

let use = λ . assert ((!r ) = 2) in

(use,w )

Here, the expression usetwo allocates a reference cell r containing the value 2, and returns a pair of

functions, one of which simply asserts that r continues to contain 2, and the other of which is the

result of readonly r . The reference cell r is, however, kept private (i.e., hidden in the environments

of the closures use and w).

Our aim is to verify that usetwo can be safely linked with arbitrary untrusted code. To do this,

we �rst prove that it satis�es the spec {>} usetwo {x . lowvalx } which means that we can always

run usetwo and, if we do, it returns a low value. It is easy to see intuitively why this spec holds:

reference cell r always contains 2, which is trivially low, so together with the spec for readonly,

this is su�cient to ensure that the closures returned by usetwo are low as well.

Next, we appeal to a general meta-theorem—and one of the main technical results of this

paper—called robust safety. Robust safety states that, if some user code satis�es a spec like the

one given above for usetwo—i.e., a spec whose postcondition stipulates that the resulting value is

low-integrity—then we can run that veri�ed user code under an arbitrary adversarial contextC (i.e.,
any context C that does not itself contain any assert statements), and we will be assured that the

execution of the resulting program will never result in a violation of any of the user code’s internal

assertions. Thus, in the particular case of usetwo, we know that the assertion that r equals 2 will

never fail.

Robust safety is a well-known meta-theorem in the security literature (Bengtson et al. 2011;

Gordon and Je�rey 2001), but it has not heretofore been employed in the context of object capability

programming. One of the central contributions of this paper is the observation that robust safety

is exactly the property a language must satisfy in order to support OCPs. Moreover, as we will
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Lit 3 lit ::= n | b

Exp 3 e ::= x | rec f x . e | e e | lit | unop e | binop e e | if e then e else e |

() | (e, e ) | fst e | snd e | inl e | inr e | case e of inl x ⇒ e|inr x ⇒ e |

fork e | ` | ref e | !e | e ← e | CAS e e e | assert e

Val 3 v ::= rec f x . e | lit | () | (v,v ) | inlv | inrv | `

Ectx 3 K ::= (standard left-to-right evaluation contexts)

h ∈ Heap , Loc
�n

⇀ Val д ∈ GoodnessBit , {OK, Fail}

σ ∈ State , Heap × GoodnessBit T ∈ Tpool , Exp∗

e;σ →r e
′
;σ ′;−→ef Head reduction (selected rules)

(rec f x . e ) closed

(rec f x . e )v ;σ →r e[v/x , rec f x . e/f ];σ ; ε
assert true;σ →r ();σ ; ε

assert false; (h,д) →r (); (h, Fail); ε fork e;σ →r ();σ ; e

refv ; (h,д) →r `; (h ] [` 7→ v],д); ε
σ .h(`) = v

!`;σ →r v ;σ ; ε

h(`) = v

` ← w ; (h,д) →r (); (h[` 7→ w],д); ε

σ .h(`) , v1

CAS `v1v2;σ →r false;σ ; ε
CAS `v1v2; (h ] [` 7→ v1],д) →r true; (h ] [` 7→ v2],д); ε

T ;σ −→ T ′;σ ′ Threadpool reduction

e;σ →r e
′
;σ ′;−→ef

(T1,K[e],T2);σ −→ (T1,K[e
′
],T2,

−→ef );σ
′

Fig. 1. Heap language with assertions

demonstrate via a range of interesting examples, the notion of low-integrity values is essential to

compositionally specifying an OCP’s contribution toward the robust safety of programs that use it.

The remainder of the paper is structured as follows. First, in §2, we introduce some basics of

OCPL, along with our formalization of low values, explain how we verify our motivating readonly
example, and state the key metatheorems of adequacy and robust safety. In §§3–5, we present

speci�cations for several more complex and realistic OCPs, along with examples of how to use

those speci�cations to verify representative clients. In §6, we discuss related work. Finally, in §7,

we conclude with a discussion of future work.

2 ROBUST SAFETY AND OCPL
In this section, we de�ne the semantics of the programming language we will be reasoning

about (§2.1), present the main ideas of OCPL and show how to use it to reason formally about our

motivating example (§2.2), and state key metatheorems for OCPL (§2.3).
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2.1 A higher-order concurrent heap language with assertions
The programming language we consider in this paper, which we call HLA, is a fairly standard

higher-order concurrent imperative language, essentially the same as the one studied by Krebbers

et al. (2017a), but with one important extension. We de�ne the language in Fig. 1. The core of

the language is a call-by-value λ-calculus with recursive functions, products, sums, references,

and fork-based concurrency.
3

The de�nitions of free and bound variables and capture-avoiding

substitution are standard and omitted. We endow the language with an operational semantics in

the style of Felleisen and Hieb (1992). The head reduction judgment e;σ →r e
′
;σ ′;−→ef describes

the single steps of computation that may be taken by individual threads. It means that, starting in

state σ , a thread running expression e may step to expression e ′ while changing the state to σ ′ and

forking o� a list of threads running expressions
−→ef . Threadpool reduction T ;σ −→ T ′;σ ′ lifts head

reduction to lists of concurrently running threads. We leave implicit the choice of operators unop
and binop, but note that they reduce according to (partial) evaluation functions and are subject to a

semantic constraint; for example, the reduction rule for unary operators

unopv ;σ →r v
′
;σ ; ε if eval unopv = v ′

employs a partial function eval : Unop → Val ⇀ Val (which, for the robust safety theorem

presented below, is assumed to send low-integrity values to low-integrity values). As is standard in

semantics for languages with mutable references, locations ` are not part of the “surface” syntax of

the language; they may only arise dynamically during execution. Using compare-and-swap (CAS),

one can implement locks (and other concurrency primitives).
4

We use the symbol ‘ ’ in place of a

bound variable to indicate any variable not occurring free in the scope of the binder. In addition to

standard derived forms (e.g., n-ary products and let expressions), we write

λx . e , rec x . e

λx1 · · · xn . e , λx1. · · · . λxn . e

rec f x1 · · · xn . e , rec f x1. λx2 · · · xn . e

and we use pattern-matching notation to deconstruct products, rather than a series of fst and snd
projections.

The one new feature in HLA, not present in Krebbers et al.’s calculus, is assertion expressions,
assert e , which serve to specify safety properties that should always hold dynamically. Assertions

in HLA operate a little di�erently from assertions in languages like C or Java, where failed assertions

abort execution or raise an exception.
5

Here, e is a boolean expression. If e evaluates to true, then

assert e has no e�ect. But if e evaluates to false, then assert e has the e�ect of irreversibly setting

a “goodness bit” д, which is maintained as part of the machine state, to Fail. (The bit is initially set

to OK.) This goodness bit simply checks whether any assertion expression has dynamically failed

during execution. Ultimately, our robust safety theorem will use this goodness bit to ensure that,

for properly veri�ed code, the goodness bit will remain OK throughout execution (and hence all

dynamic assert checks must succeed).

3
OCPs are typically studied in the context of an event-driven programming model. We work in the more general setting of

fork-based concurrency because Iris supports it natively and it does not seem to signi�cantly a�ect reasoning about OCPs.

4
The expression CAS `v1 v2 atomically compares the contents of location ` to value v1 and, if equal, writes v2 to ` and

returns true; otherwise, it returns false. For simplicity, we do not restrict CAS to comparing �rst-order, “word-sized” values.

This is unrealistic, but we use CAS in only realistic ways. (Spinlocks, in particular, are compatible with such a restriction and

su�ce for our purposes.)

5
We de�ne C-style assertions—which we call assumption expressions—in §3.
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The reader may wonder why we employ a goodness bit instead of just saying that assert false
gets stuck or aborts the program. The reason is simple: we wish to use OCPL to reason not only

about fully veri�ed code but also about the behavior of veri�ed code when linked with untrusted

code (that does not itself contain assertions). So it is important that we have a way of verifying

Hoare triples even for code that may very well get stuck (i.e., fail to make progress) thanks to

dynamic type errors introduced by the untrusted code. We nevertheless want to say that assert
expressions in such code always succeed, so we must di�erentiate assert false from other stuck

states.
6

2.2 A program logic for reasoning about OCPs
We now present some of the essential features of OCPL, our logic for reasoning about OCPs.

Progressive vs. non-progressive triples. OCPL is a Hoare-style program logic derived from Iris, a

modern separation logic for higher-order concurrent imperative programs.
7

As such, one of the

main assertions in OCPL is the Hoare triple, which is used to specify the behavior of expressions in

terms of preconditions and postconditions. The Hoare triple {P } e {x . Q }p asserts that, assuming

e is executed starting in a state satisfying the precondition P , then it will execute without any

dynamically failing assert expressions, and if it terminates with value v , then the �nal state

will satisfy the postcondition Q (which may mention the bound variable x). The progress bit
p ∈ {progress, noprogress} indicates whether the triple is progressive (i.e., ensures that e does

not get stuck) or non-progressive.8 As shorthand, we will write {P } e {x . Q } and {P } e {x . Q }
?

for

progressive and non-progressive triples, respectively; the former assertion implies the latter. We

often write the postcondition of a Hoare triple as {x1 · · · xn , ret pat. Q }, which binds the xi and

speci�es that any returned value will be precisely pat. This notation is (roughly) syntactic sugar

for the post-condition {x . ∃x1, . . . ,xn . x = pat ∗Q }.
Hoare triples in Iris (and thus OCPL) enjoy the standard structural rules for higher-order concur-

rent separation logic (e.g., the rule of consequence, the frame rule, and monadic bind and return)

as well as rules for de�ning and enforcing logical protocols on physical and ghost state. Readers

interested in these aspects of OCPL should consult Jung et al. (2015) for a high-level overview

and Jung et al. (2017) for a recent account of Iris’s foundations.

In addition, OCPL enjoys a full set of basic rules for HLA, comprising progressive triples for

reasoning about head reductions and non-progressive triples for reasoning about stuck expressions.

The following three rules, for example, concern application.

App

(rec f x . e ) closed

{P } e[v/x , rec f x . e/f ] {x . Q }

` {P } (rec f x . e )v {x . Q }

AppNrec

¬(∃f ,x , e ) v = rec f x . e

{>} v v ′ {x . Q }
?

AppOpen

¬(rec f x . e ) closed

{>} (rec f x . e )v {x . Q }
?

Rule App says that, to prove a triple for a closed function application, it su�ces to show an analogous

triple after β-reduction. Rules AppNrec and AppOpen give non-progressive triples to applications

that, according to the operational semantics of HLA, always get stuck: as such applications never

produce a value, they can be given an arbitrary postcondition Q .

6
Instrumenting the state with a goodness bit is not strictly necessary; for example, one could alternatively use a special

machine con�guration to indicate failed assertions.

7
Readers unfamiliar with separation logic can, to a �rst approximation, read separating conjunction P∗Q as conjunction P∧Q

and magic wand P −∗ Q as implication P ⇒ Q .

8
Note: this is a point of di�erence from the original Iris, which only supported progressive triples.
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PointstoExclusive

` ↪→ v ∗ ` ↪→ w ` ⊥

Alloc

{>} refv {`, ret `. ` ↪→ v}

Load

{` ↪→ v} !` {ret v . ` ↪→ v}

Store

{` ↪→ v} ` ← w {ret (). ` ↪→ w}

(a) High locations

HighNotLow

` ↪→ v ∗ lowloc ` ` ⊥

AllocLow

{lowvalv} refv {`, ret `. lowloc `}

LoadLow

{lowloc `} !` {x . lowvalx }

StoreLow

{lowloc ` ∗ lowvalv} ` ← v {ret (). >}

(b) Low locations

Fig. 2. Selected proof rules for locations

We omit analogous rules for other expressions that ignore the ambient machine state, turning

now to the more interesting rules for assertions and locations.

Assertion expressions. OCPL supports the following rule for assertion expressions.

Assert

{P } e {x . x = true ∗Q }p ` {P } assert e {ret (). Q }p

Assert enables reasoning about successful assertions. It says that, to prove a Hoare triple for

assert e with postcondition Q and return value (), it su�ces to prove that e evaluates to true
with postcondition Q .

High vs. low locations. OCPL divides memory locations (i.e., mutable references) into two types:

high-integrity and low-integrity (or just high and low for short). High locations are locations that are

private to user code, on which it may place invariants of its choosing, and to which untrusted code

should not be given direct, unfettered access. Low locations are locations that may be freely shared

with—and may in fact have been allocated by—untrusted code. Note that there is no distinction

between high and low locations in the operational semantics of HLA; rather, this distinction is

merely something we track in OCPL in order to formally specify the interface between user code

and untrusted code.

Reasoning about high locations. Since high locations are locations controlled privately by veri�ed

user code, OCPL supports reasoning about them in essentially the same way as one reasons about

pointers in traditional separation logic—via the classic “points-to” assertion ` ↪→ v . This points-to

assertion denotes the knowledge that location ` currently points to value v as well as ownership

of `. What this means is that if we own `, then no other party (e.g., neither another thread nor

the current thread’s context) can be simultaneously making any assertion about `, so we should

have permission to freely read from and write to ` without worrying about violating any other

party’s reasoning. This reasoning is formalized with standard rules about high locations displayed

in Fig. 2a.

Reasoning about low locations. We represent the knowledge that a location ` is low via the

assertion lowloc `. In contrast to the points-to assertion for high locations, the assertion lowloc `
does not denote any ownership of ` because as soon as a location is considered safe to be shared

with untrusted code, there is no way of knowing what that code will do with it. Rather, lowloc `
merely tells us that ` is low now and will remain low forever. Moreover, if ` is low—and hence
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li�Ψ (rec f x . e ) , .∀v . {li�Ψv} e[v/x , rec f x . e/f ] {y. li�Ψy}
?

(LiftRec)

li�Ψ ` , Ψ ` (LiftLoc)

li�Ψ lit , > (LiftLit)

li�Ψ () , > (LiftUnit)

li�Ψ (v1,v2) , .(li�Ψv1 ∗ li�Ψv2) (LiftPair)

li�Ψ (inlv ) , .li�Ψv (LiftInl)

li�Ψ (inrv ) , .li�Ψv (LiftInr)

Fig. 3. Li�ing location predicates to value predicates

safely shareable with untrusted code—then we know that the value v it points to must also be

safely shareable with untrusted code—i.e., v is a low value.
Of course, this begs the question: what is a low value? Intuitively, a low value is a value from

which there is no way to extract a high location. We will make this more precise in a moment. For

now, assume we have a predicate lowvalv , which says that v is a low value.

The description of low locations given above is formalized in the proof rules of Fig. 2b. Rule

HighNotLow says that a location cannot be high and low at the same time. Rules AllocLow, LoadLow,

and StoreLow mimic the corresponding rules for allocation, reading, and writing of high locations,

except that for low locations, we do not track the precise contents of the location `—we merely

insist that ` always points to a low value.

Lifting low locations to low values. We return now to the question of what it means for a value v
to be low. Intuitively, a low value is one from which the language constructs of HLA provide no

way to get direct access to any high location. This is fundamentally an extensional property, i.e.,
a property about the observations that a program can make (i.e., the information it can extract)

when passed the value v . As such, for those readers familiar with classic techniques from program

semantics, it will not come as a surprise that a natural way of formally accounting for this property

is via a logical relation.

Fig. 3 shows the de�nition of this logical relation, presented in a somewhat more general form,

li�Ψv . Essentially, li� takes as input Ψ, a predicate on locations, and lifts it to a predicate on values,

with the property that li�Ψv is true if Ψ holds for any location that can be extracted from v . Given

this de�nition, lowvalv can be de�ned simply as li� lowlocv—i.e., a value is low if any location

that can be extracted from it is low.

On literals and unit, li�Ψ is trivially true since no location can be extracted from them; on

locations, li�Ψ is simply Ψ; and on products and sums, li�Ψ is de�ned in the obvious recursive

manner. The only interesting case is the one for functions. For a function value f , we want to say

that li�Ψ f if, whenever we apply f , the resulting term only ever produces values that satisfy li�Ψ.

(This property on applications of f is expressed via a non-progressive Hoare triple since f may be

applied to arguments constructed by untrusted code.) But what arguments should we consider

when applying f ? This is where the logical relation comes in: we need only consider argument

values that themselves satisfy li�Ψ, because ultimately we will make sure that all values passed to

untrusted code satisfy li�Ψ.

Note that the de�nition of li�Ψ in the function case is rather circular, since it quanti�es over

values that satisfy li�Ψ. To ensure that this de�nition is well-founded, we rely on OCPL’s support
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for guarded recursive de�nitions (inherited from Iris). In OCPL, a de�nition may be arbitrarily

recursive so long as any recursive references are guarded by an occurrence of the . (“later”) modality.

Under the hood, all assertions in OCPL are implicitly indexed by steps of computation—i.e., the

model of OCPL is a kind of step-indexed model (Birkedal et al. 2011)—and .P means that P holds,

roughly speaking, “after one step of computation”. Since the �ne points of the “later” modality are

not particularly relevant to our main contribution, and our use of “later” is standard, we refer the

reader to prior work for a more detailed presentation (Appel et al. 2007).

Using the aforementioned structural and basic rules, we can readily derive rules for working

with lifted values. For example, the derived rule

LiftApp

{li�Ψv ∗ li�Ψv ′} v v ′ {x . li�Ψ x }
?

says that one can always apply a lifted value to a lifted argument, and such applications either get

stuck (the rule uses a non-progressive triple) or produce a lifted result. These derived rules help,

for instance, in verifying clients of the public membrane (§5), which we specify using li�.

To make concrete this rather abstract tour of OCPL, we return to our motivating example. To

verify that readonly satis�es it speci�cation, we have to show that the function it returns, λ . !`, is

a low value given a triple {>} !` {x . lowvalx } for dereferencing `. This follows easily by LiftRec.

To verify that the expression usetwo returns a low value, we proceed as follows. From the

allocation ref 2 we obtain ` ↪→ 2 for some location ` (by Alloc). Since we own `, we are free

to transfer ownership of ` into a shared invariant, which in Iris (and OCPL) is written ` ↪→ 2 ,

stipulating that ` will always contain 2. (Invariants like ` ↪→ 2 , which are established “dynamically”

in the course of a program proof and hold persistently thereafter, are a feature inherited directly

from Iris (Jung et al. 2015). We omit rules for working with them here since they are orthogonal to

the focus of this paper.) By Load, we easily obtain a lemma

` ↪→ 2 ` {>} !` {ret 2. >} (†)

stating that, under our invariant, dereferencing ` always returns 2. To prove that the value w
returned by readonly ` is low-integrity, we apply readonly’s speci�cation and have to show that

dereferencing ` returns a low value (which is trivial, by (†) and LiftLit). To prove that the function

use , λ . assert ((!`) = 2) is low-integrity, we apply LiftRec. In this subproof, we have to prove

that, under our invariant, the assertion returns a low value (trivial by Assert, (†), LiftUnit). It remains

to show that the pair (w, use) is low-integrity given knowledge that bothw and use are low-integrity,

which is trivial by LiftPair.

2.3 Metatheory
OCPL inherits from Iris the basic metatheorem of adequacy for progressive triples (omitted here),

which asserts that expressions veri�ed with progressive triples make progress (i.e., do not get stuck)

and that, if such expressions terminate, the postconditions of their triples actually hold. OCPL also

enjoys an analogous metatheorem for non-progressive triples, which simply drops the progress

guarantee. More interestingly, OCPL enjoys the following metatheorems concerning dynamically

checked safety properties. The entire metatheory has been veri�ed formally in Coq (OCPL 2017).

Theorem AdeqacySafety. If an expression is veri�ed and run in a good state, we can observe that

every reachable state is good (i.e., no assertions fail):

{>} e {x . >}p (e ); (h, OK) −→∗ T ′; (h′,д′)

д′ = OK
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intervals = λ . let (seal, unseal) = makeseal () in

letmakeint = λn1 n2. seal (if n1 ≤ n2 then (n1,n2) else (n2,n1)) in

let imin = λi . fst (unseal i ) in

let imax = λi . snd (unseal i ) in

let isum = λi . let x = unseal i in λj . let y = unseal j in

seal (fst x + fst y, snd x + snd y)

in (makeint, imin, imax, isum)

Fig. 4. Library for integer intervals

Theorem RobustSafety. Let AdvCtx denote the set of HLA contexts containing neither locations

nor assertions. If expression e is closed and has been veri�ed to return only low values, then

for every adversarial context C , on running C[e] from an initial state, we can observe that every

reachable state is good (i.e., no assertions fail):

C ∈ AdvCtx e closed {>} e {x . lowvalx }p (C[e]); (∅, OK) −→∗ T ′; (h′,д′)

д′ = OK

Robust safety captures our informal distinction between “user code” and “untrusted code”. Both

are written in HLA, but user code must be veri�ed in OCPL and may contain assertion statements,

whereas untrusted code need not be veri�ed and is not permitted to contain assertion statements.

Untrusted code may also not contain references to memory locations `, since those are not part of

the surface syntax of the language. The theorem says that veri�ed user code can be linked with

untrusted code, while remaining safe (i.e., its internal assertion statements will never assert false).

3 DYNAMIC SEALING
We now consider one of the oldest and most in�uential OCPs: dynamic sealing, also called the

sealer-unsealer pattern. Originally proposed by Morris (1973), dynamic sealing makes it possible

to support data abstraction in the absence of static typing. In this section, we show how OCPL

supports compositional reasoning about dynamic sealing. In particular, we show how to implement

dynamic sealing in HLA and how to give a compositional speci�cation for this implementation,

from which we derive useful speci�cations for interesting abstractions built on top of it and prove

robust safety for representative clients. (We consider an alternative implementation of the OCP,

satisfying a slightly weaker speci�cation, in Appendix A. We also show how ideal speci�cations for

cryptographic signing and encryption primitives can be derived from the speci�cation of dynamic

sealing in Appendix B.)

The functionality of dynamic sealing. Morris (1973) introduced dynamic sealing to enforce data

abstraction while interoperating with untrusted, potentially ill-typed code. He stipulated a function

makeseal for generating pairs of functions (seal, unseal), such that (i) for every value v , sealv
returns a value v ′ serving as an opaque, low-integrity proxy for v; and (ii) for every value v ′,
unsealv ′ returns v , if v ′ was produced by sealv , and otherwise gets stuck. The key point is that

this seal-unseal pair supports data abstraction: the client of these functions can freely pass sealed

values to untrusted code since they are low-integrity, while at the same time imposing whatever

internal invariant it wants on the underlying values that they represent.
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To see how this is useful, consider a simple client of dynamic sealing, namely Morris’s example

of a library for integer intervals (Fig. 4). Let [n1,n2] denote the set {n1,n1 + 1, . . . ,n2 − 1,n2}.
The function intervals returns several interval-manipulating routines: makeint n1 n2 constructs

[minn1 n2,maxn1 n2], imin [n1,n2] returns n1, imax [n1,n2] returns n2, and isum [n1,n2] [n
′
1
,n′

2
]

returns [n1 + n
′
1
,n2 + n

′
2
].

These routines use dynamic sealing to enforce the internal data representation of intervals,

namely that the interval [n1,n2] is represented by the pair (n1,n2), which is critical to ensuring

correctness of the library. In particular, notice that seal and unseal are kept private to the intervals
implementation, which means it can enforce that the only values sealed with seal are pairs (n1,n2)
representing intervals (i.e., where n1 ≤ n2). Consequently, the imin (resp. imax) function can simply

return the �rst (resp. second) component of its argument after unsealing it, because it knows that,

even if the argument comes from untrusted code, so long as the unsealing succeeds, the resulting

value will be a pair where the �rst (resp. second) component represents the lower (resp. upper)

bound of the input interval. Furthermore, a client of intervals knows that if it applies both imin
and imax to an arbitrary untrusted value v , and both operations succeed, producing values v1 and

v2, then v must indeed represent a proper interval [n1,n2] (with n1 ≤ n2), and the resulting values

of imin and imax are precisely v’s lower and upper bounds (i.e., with v1 = n1 and v2 = n2). In this

way, dynamic sealing a�ords programmers the essential functionality of data abstraction, even

when interfacing with untrusted code, at the cost of some simple dynamic checks at the boundaries

of the abstraction.

Implementation of dynamic sealing. We implement dynamic sealing in HLA as follows.
9

makeseal , λ . let tbl = refmapempty in

let sync = makesync () in

let seal = λx . let k = ref () in sync(λ . tbl ← mapinsertnew (!tbl) k x );k in

let unseal = λk . assume (isloc k ); sync(λ . maplookup (!tbl) k ) in

(seal, unseal)

The function makeseal allocates a fresh lookup table tbl, which is used to store the mapping between

sealed values and their proxies, and access to which is shared by the seal and unseal functions that

makeseal returns. To ensure proper synchronization between table accesses during calls to seal
and unseal, makeseal also creates a lock via the call to makesync. (The latter returns a higher-order

function sync, which ensures mutual exclusion among any expressions ei run under sync (λ . ei ).
For more details on makesync, see Appendix F.) An entry [k 7→ v] in tbl signi�es that location k
is a low-integrity proxy for sealed value v . To seal a value v , we allocate a fresh, low location k ,

extend the table, and return k . To unseal a value v ′, we require that v ′ be a location k and then

look up k in the table.

To test whether the argument to unseal is a location, we use a primitive unary operator isloc
(with boolean return type), as well as an assumption expression. The expression assume e resembles

a C- or Java-style assertion: it returns unit if e evaluates to true; otherwise, it gets stuck. It is easy

to de�ne assumption expressions using a stuck term abort:

abort , 0 0 assume e , if e then () else abort

9
We discuss the straightforward functions makesync, mapempty, mapinsertnew, and maplookup in Appendix F. Note that

maplookup f k gets stuck if location k is not in the domain of the partial function represented by value f .
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Data abstraction.
MakeSealSpec

{>} makeseal () {v1v2 γ , ret (v1,v2). issealγ v1 ϕ ∗ isunsealγ v2 ϕ}

SealSpec

{issealγ s ϕ ∗ ϕ v} s v {x ′. issealedγ v x ′ϕ}

UnsealSpec

{isunsealγ u ϕ ∗ issealedγ v v ′ϕ} u v ′ {ret v . >}
UnsealAnySpec

{isunsealγ u ϕ} u v ′ {x . issealedγ x v ′ϕ}
?

SealedInv

issealedγ v v ′ϕ ` ϕ v
SealedAgree

issealedγ v1v ′ϕ ∗ issealedγ v2v ′ϕ ` v1 = v2

Low values.

SealedLow

issealedγ v v ′ϕ ` lowvalv ′

SealLow

(∀v ) lowvalv ` ϕ v

issealγ s ϕ ` lowval s

UnsealLow

(∀v ) ϕ v ` lowvalv

isunsealγ u ϕ ` lowvalu

Fig. 5. Sealing interface (presupposing ϕ persistent)

These satisfy the following speci�cations.

Abort

{>} abort {x . Q }
?

Assume

{P } e {x . x = true −∗ Q }
?
` {P } assume e {ret (). Q }

?

Abort follows trivially from AppNrec and gives abort a non-progressive triple because in fact abort
always gets stuck and never produces a value; correspondingly, it can also be given an arbitrary
postcondition Q . Compared to Assert in §2.2, Assume (i) uses non-progressive triples since assume e
may get stuck, and (ii) only requires the postcondition Q to be shown to hold under the assumption
that e returns true.

Specifying dynamic sealing. The motivation for dynamic sealing given above was completely

informal. Let us now see how OCPL lets us formalize it.

We specify dynamic sealing in Fig. 5. Rule MakeSealSpec for allocating a sealer-unsealer pair ties the

two functions it returns to an abstract (logical) name γ and representation invariant ϕ. In particular,

the assertions
10 issealγ v1 ϕ and isunsealγ v2 ϕ represent knowledge thatv1 andv2 are the seal and

unseal functions associated with the sealer-unsealer pair named γ with representation invariant ϕ.

Similarly, the assertion issealedγ v v ′ϕ represents knowledge that v ′ is a low-integrity proxy for

value v (for the sealer-unsealer pair named γ with representation invariant ϕ). This relation is

functional inv ′—i.e., unsealing the samev ′ twice will produce the samev (SealedAgree)—and implies

ϕ v—i.e., that the unsealed value v must satisfy the representation invariant (SealedInv). Conversely,

to seal a value v , one is required to prove ϕ v (SealSpec). The progressive triple UnsealSpec is suitable

for use when one already knows that v and v ′ are related; it returns v . The non-progressive triple

UnsealAnySpec returns the value v related to v ′, or gets stuck.

Finally, the three rules at the bottom of Fig. 5 concern the lowval relation. Rule SealedLow says that

all sealed values are low values—indeed, the whole point of using sealing is to produce low-integrity

proxy values—while rules SealLow and UnsealLow say when the seal and unseal functions themselves

10
In our speci�cations, predicates whose names start with “is” produce, when fully applied, persistent propositions (and are

themselves called persistent predicates). Persistent propositions may be regarded as intuitionistic (technically, they may be

freely duplicated). A sealer-unsealer pair’s representation invariant ϕ must be persistent.
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Properties.

MinSpec

{isminγ imin ∗ isintervalγ n1 n2 i} imin i {ret n1. >}

IntervalInv

isintervalγ n1 n2 i ` n1 ≤ n2

IntervalAgree

isintervalγ n1 n2 i ∗ isintervalγ n′1 n
′
2
i ` n1 = n

′
1
∗ n2 = n

′
2

Non-progressive triples.

MinAnySpec

{isminγ imin} iminv {n1 n2, ret n1. isintervalγ n1 n2v}?
MaxAnySpec

{ismaxγ imax} imax v {n1 n2, ret n2. isintervalγ n1 n2v}?

Low values.
IntervalLow

isintervalγ n1 n2 i ` lowval i
MinLow

isminγ imin ` lowval imin
MaxLow

ismaxγ imax ` lowval imax

Fig. 6. Intervals interface (selected rules—see Appendix C)

can be considered low values. Intuitively, seal and unseal can be considered low values whenever

doing so does not either (i) violate the representation invariant ϕ or (ii) result in high-integrity

values �owing to a low context. Thus, seal is low so long as any value that is passed to it (i.e., any

low value) satis�es ϕ, and unseal is low so long as any value returned by it (i.e., any value that

satis�es ϕ) is low. (We show how to gainfully employ low seal and unseal functions in Appendix B.)

The speci�cation for dynamic sealing from Fig. 5 can be straightforwardly used to derive an anal-

ogous speci�cation for the interval-manipulation routines generated by intervals, as we described

above. In particular, by choosing the representation invariant ϕ v , ∃n1,n2. v = (n1,n2) ∗ n1 ≤ n2,
we can easily verify the rules shown in Fig. 6 (the full speci�cation for intervals is given in Appen-

dix C). The assertion isintervalγ n1 n2 i represents knowledge that value i represents interval [n1,n2]
in the instance of the intervals library with abstract name γ . A value may represent at most one

interval (IntervalAgree). A set of progressive triples (e.g., MinSpec) account for our informal speci�ca-

tion and are suited to reasoning about values known to represent intervals. A set of non-progressive

triples are suited to reasoning about values that might represent intervals. Rule MinAnySpec, for

example, says that for any value v , iminv might get stuck, but if it terminates with value v̂ , then v
represents some interval with minimum n1 and v̂ = n1. Lastly, there are rules (e.g., IntervalLow and

MinLow) expressing the fact that values representing intervals, and the interval routines themselves,

may be safely shared with untrusted code. Crucial to the soundness of these rules is the fact that the

seal function used internally by intervals is not shared with untrusted code (i.e., not low): according

to rule SealLow, in order for seal to be treated as low, the representation invariant ϕ would have to

be satis�ed by all low values, which it clearly is not.

With the spec for intervals in hand, we can readily prove that the following simple but illustrative

client of intervals is robustly safe.

client , let cap = intervals () in

let (makeint, imin, imax, isum) = cap in

let check = λj . assert (imin j ≤ imax j ) in

(check, cap)
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The expression constructs an instance cap of the intervals library, along with a function check
which takes an arbitrary value j as its argument and asserts that imin j is no greater than imax j.
Intuitively, even if client is shared with untrusted code, this assertion must always succeed, because

if the applications of imin and imax do not get stuck, it means that j is a proper interval value,

whose lower bound is ≤ its upper bound.

Formally, this is guaranteed as follows. First, using the spec for intervals, we can prove

{>} client {x . lowvalx }

The key step in the proof involves showing that the assertion in check succeeds for arbitrary j,
which follows directly from MinAnySpec, MaxAnySpec, IntervalAgree, and IntervalInv. Second, we

appeal to Theorem RobustSafety from §2.3, which implies that the assertion in check will not fail,

even when client is linked with untrusted code.

4 CARETAKER
Next, we consider another well-known OCP, the caretaker pattern (Miller and Shapiro 2003; Miller

2006). This OCP allows veri�ed (trustworthy) code to grant untrusted code access to a high-

integrity resource (a high-integrity location or an API that modi�es high-integrity locations), and

subsequently disable or enable the access at any time. When the caretaker is enabled, untrusted

code can access the resource; when the caretaker is disabled, untrusted code cannot access the

resource and the veri�ed code has full control over the resource. The caretaker pattern is useful

when the veri�ed code wants to ensure that the untrusted code can access the resource only while

some invariant holds. Disabling the caretaker allows the veri�ed code to temporarily break the

invariant, secure in the knowledge that untrusted code won’t be able to access the resource until

the caretaker is re-enabled.

In this section, we �rst implement a caretaker for APIs in HLA, and specify and verify it in OCPL.

Then, we use the API caretaker to implement a second caretaker for locations and, again, specify

and verify it. Finally, we present a simple client for the location caretaker and establish that it is

robustly safe.

API caretaker. The API caretaker allows veri�ed code to share revokable access to any set of

functions, which may have side-e�ects.

makecaretaker , λ . let enabled = ref false in let sync = makesync() in (sync, enabled)

wrap , λ(sync, enabled) f x . sync (λ . assume (!enabled); f x )

enable , λ(sync, enabled). sync (λ . enabled ← true)

disable , λ(sync, enabled). sync (λ . enabled ← false)

The function makecaretaker returns a new caretaker ct, which comprises a fresh lock sync, whose

purpose is described soon, and a fresh boolean reference enabled. The caretaker is disabled (enabled)

when enabled is false (true). The functions enable ct and disable ct enable and disable the caretaker

ct by setting enabled appropriately. The function wrap ct f wraps the function f in the caretaker

ct, returning a function that behaves exactly like f when ct is enabled, and gets stuck when ct is

disabled. Additionally, accesses to all functions wrapped in ct are serialized using the lock sync.
To use this interface, veri�ed code creates a caretaker ct and holds it privately. It can then wrap

any number of API functions using wrap and disclose the wrapped functions to untrusted code.

The untrusted code’s access to all those functions can be simultaneously disabled and enabled by

calling disable ct and enable ct, respectively.
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EnabledExclusive

enabledγ b1 ∗ enabledγ b2 ` ⊥

MakeCaretakerSpec

{>} makecaretaker () {ct γ , ret ct. iscaretakerγ ct R ∗ enabledγ false}

CanWrap

canwrap f R , ∀v . {lowvalv ∗ R} f v {x ′. lowvalx ′ ∗ R}
?

WrapSpec

{iscaretakerγ ct R ∗ canwrap f R} wrap ct f { f ′. lowval f ′}

EnableSpec

{iscaretakerγ ct R ∗ enabledγ false ∗ R} enable ct {ret (). enabledγ true}

DisableSpec

{iscaretakerγ ct R ∗ enabledγ true} disable ct {ret (). enabledγ false ∗ R}

Fig. 7. API caretaker interface

API caretaker speci�cation. The goal of using the API caretaker is to ensure that untrusted

code can access wrapped functions only while some logical resource or invariant R holds on

the heap. Our speci�cation of the API caretaker in Fig. 7 formalizes this intuition. The assertion

iscaretakerγ ct R represents knowledge that value ct is a caretaker with (logical) name γ whose

wrappers allow (untrusted code) access to wrapped functions only when R holds. The assertion

enabledγ b represents exclusive ownership of the (veri�ed code’s) right to enable and disable all

wrappers created using the caretaker named γ as well as knowledge that the caretaker is currently

enabled (if b = true) or disabled (otherwise).

When applying MakeCaretakerSpec, one may pick an arbitrary invariant R. The spec returns a

disabled caretaker tied to R and a fresh name γ . To enable ct, the (veri�ed) code calling enable
must establish that R holds (rule EnableSpec). Dually, rule DisableSpec says that disabling ct provides

ownership of R to the caller (veri�ed code).

Rule WrapSpec is at the heart of our speci�cation. It says that to wrap a function f using ct,
one has to prove that f , when applied to any low value v (possibly provided by the untrusted

code), preserves the invariant R and returns a low value. We capture this client responsibility in the

precondition (canwrap f R) on wrap. So, any wrapped function f can assume R in its precondition

but it must re-establish R if it terminates (note that the triple for f v in rule CanWrap is non-

progressive). This ensures that while ct is enabled, calls to the wrapped functions by the untrusted

code preserve R. While ct is disabled, veri�ed code can change the state to break R but, prior to

re-enabling ct, it must re-establish R.

The implementation of the API caretaker veri�es against this speci�cation. We note that the

speci�cation and veri�cation of the API caretaker closely resemble similar e�orts for specifying and

verifying locks in concurrent programs (Dinsdale-Young et al. 2010). Based on this observation, we

o�er a shorter implementation of the API caretaker in Appendix D. This implementation uses lock

release and acquire instead of the boolean reference enabled to enable and disable the caretaker.

The API caretaker is a very general OCP. It can be used to build caretakers for other kinds

of resources. As an instance, we show next how to build a caretaker for locations using the API

caretaker.
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enabledγ b1 ∗ enabledγ b2 ` ⊥
IsRmon

isrmon f Ψ , ∀v . {Ψv} f v {x ′. Ψv ∗ lowvalx ′}
?

IsWmon

iswmon f Ψ , ∀v . {lowvalv} f v {x ′. Ψ x ′}
?

MakeLocCtSpec

{isrmon fr Ψ ∗ iswmon fw Ψ}
makelocct fr fw `
{ct γ v, ret (ct,v ). islocctγ ct ` Ψ ∗ enabledγ false ∗ lowvalv}

LocCtEnableSpec

{islocctγ ct ` Ψ ∗ enabledγ false ∗ ` ↪→ v ∗ Ψv} enable ct {ret (). enabledγ true}

LocCtDisableSpec

{islocctγ ct ` Ψ ∗ enabledγ true} disable ct {v, ret (). enabledγ false ∗ ` ↪→ v ∗ Ψv}

Fig. 8. Location caretaker interface

Location caretaker. The location caretaker, de�ned by the function makelocct below, facilitates

revokable and mediated read and write access to a location. Speci�cally, it ensures that the location is

accessed by untrusted code only while some stipulated predicate Ψ holds on the location’s contents.

makelocct , λrmonwmon r . let ct = makecaretaker () in

let read = wrap ct (λ . rmon (!r )) in

let write = wrap ct (λx . r ← (wmonx ) in

(ct, (read,write))

The function makelocct, when applied to a function fr, a function fw, and a location `, returns

a pair (ct, (read,write)). The API caretaker ct controls whether or not the functions {read,write}
are enabled. When ct is enabled, the function read reads ` and �lters the read value through fr.
Similarly, write writes ` after �ltering the value to be written through fw. Thus, fr and fw mediate

reads from and writes to `. Consider, for example, an application writev , representing a request to

write value v to location `. If ct is enabled, the application reduces to ` ← ( fwv ) and fw gets to

decide what is written.

To use the location caretaker on a location `, veri�ed code invokes makelocct fr fw ` with ap-

propriate fr and fw. It holds ` and the returned API caretaker ct private, but passes read and write
to untrusted code. It can then enable and disable access to the protected location using the calls

enable ct and disable ct, respectively. While ct is enabled, all reads and writes to ` are mediated by

fr and fw, respectively.

Location caretaker speci�cation. Our location caretaker speci�cation (Fig. 8) ensures that the

value in the protected location ` satis�es some stipulated predicate Ψ whenever the location is

accessible to the untrusted code. The proposition islocctγ ct ` Ψ means that value ct is an API

caretaker for location ` with logical name γ and predicate Ψ governing the contents of location `
when the caretaker is enabled. Logical names and propositions of the form enabledγ b serve the

same purpose as in the API caretaker interface.

The triple MakeLocCtSpec speci�es the functionmakelocct and imposes conditions on the function’s

�rst two arguments, fr and fw. Since fr receives a value read from the protected location, fr’s input

can be assumed to satisfy Ψ. Since the output of fr will be returned to untrusted code, that output
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must be low. Hence, fr must transform values satisfying Ψ to low values. Dually, since fw receives

a value from untrusted code and its output is written to the protected location, fw must transform

low values to values satisfying Ψ. The postcondition for makelocct says that the returned functions

read,write are low, so they can be passed to untrusted code safely. The precondition of enable
insists that ` point to a value v satisfying Ψ before the caretaker is enabled (rule LocCtEnableSpec).

Dually, the postcondition of disable reveals the fact that ` points to a value v satisfying Ψ (rule

LocCtDisableSpec).

The location caretaker’s code satis�es this speci�cation, assuming the speci�cation of the API

caretaker (Fig. 7). To illustrate how programs may use a location caretaker, and how such programs

may be veri�ed, we consider the following very simple program, client.

asserteven , λn. assert (even n);n

assumeeven , λn. assume (even n);n

client , let r = ref 0 in

let (ct,w ) = makelocct asserteven assumeeven r in

enable ct;

let sync = makesync () in

let use = sync (λ . disable ct; assert even (!r );

r ← 1; r ← 0; enable ct)

in (use,w )

The expression client constructs a reference cell r (initially containing 0) and constructs and

immediately enables a location caretaker ct serving access to r . The goal is to maintain the invariant

that untrusted code only sees even numbers in r . To ensure this invariant, the location caretaker ct
is created with the write �lter fw = assumeeven, which gets stuck unless the value being written

is an even number. The read monitor, fr = asserteven, checks that the value being read from r is

indeed even. Additionally, client exposes to its (untrusted) context a function use that (within the

scope of an exclusive lock, sync) locally disables the caretaker and temporarily breaks the invariant

by writing 1 to r .

Using the speci�cation of the location caretaker, we prove that client satis�es the triple

{>} client {x . lowvalx }

By Theorem RobustSafety, client is robustly safe. This means that irrespective of how the (untrusted)

context calls use and the wrapped read/write interface w , it can never observe a non-even number

in r (else, the assertion in asserteven would fail).

5 MEMBRANE
When veri�ed (trustworthy) and untrusted code interoperate, a general concern is that values passed

from veri�ed to untrusted code may accidentally reveal high-integrity locations. The membrane

pattern (Miller 2006; Miller et al. 2008; Google, Inc. 2015) was designed to o�set this possibility.

A membrane is a bidirectional transformation on values passing from veri�ed to untrusted code

and vice versa. In the veri�ed-to-untrusted direction, it sanitizes values to make the extraction of

high-integrity locations impossible. A trivial way to implement the membrane is to use the seal
function of §3, which replaces all values with proxies. However, these proxies cannot be used by

untrusted code, other than by passing them back to the veri�ed code. To address this shortcoming,

the membrane pattern uses a deep inspection of values to selectively hide high-integrity locations
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inside values, while preserving their overall structure (pairs map to pairs, functions map to functions,

etc.). This allows the untrusted code to use the transformed values, while still ensuring that it won’t

get access to high-integrity locations.

While the speci�cs of the transformation depend on the language and security objectives of the

application, a common core of all membranes is a function that lifts a use case-speci�c bidirectional

transformation on locations to a bidirectional transformation on values. We �rst de�ne this function,

membrane, in HLA below, show its OCPL speci�cation and verify the function. Then, we use this

function to implement a speci�c membrane that we call the public membrane. This membrane

replaces each high-integrity location nested in a value with a fresh shadow location and provides

the veri�ed code special functions to inspect those shadow locations. This is similar to how the

membrane pattern is implemented in Google’s Caja, a JavaScript library for securing communication

between mutually distrusting domains in web applications (Miller et al. 2008; Google, Inc. 2015).
11

Membrane code. The function membrane that forms the common core of the membrane pattern

is de�ned below. This is a higher-order function that takes as its �rst two arguments two other

functions, locout and locin, both of type Loc → Val . The function locout de�nes how locations
crossing from veri�ed to untrusted code are transformed by the membrane. Dually, the function

locin de�nes how locations crossing in the other direction, from untrusted to veri�ed code, are

transformed. Given these two arguments, membrane locout locin is a function of type Val → Val
that transforms values passing from veri�ed to untrusted code. The function for transforming

values passing in the other direction—from untrusted to veri�ed code—is obtained by reversing the

arguments to membrane, i.e., it is membrane locin locout.

membrane , recmemb locout locinx .

let wrap = memb locout locin in

if isfun x then let unwrap = memb locin locout in

λy. wrap(x (unwrapy))

else if isloc x then locout x
else if islit x then x

else if x = () then ()

else if ispair x then (wrap(fst x ),wrap(snd x ))

else ifinl x as inl x ′ ⇒ inl(wrap x ′)

else ifinr x as inr x ′ ⇒ inr(wrap x ′)
else assert false // i.e., not reached

Internally, membrane recurses on the structure of the value x being transformed. When the value

is a location, the result is simply locout x . When the value is a literal, it is returned immediately.

When the value is a pair, membrane recurses on the two components of the pair. The interesting

case arises when the value x is a function. In this case, membrane returns a function, which when

applied (by the untrusted code), �rst recursively applies the membrane to the untrusted argument y,

then applies the given function x to the transformed argument, and then re-applies the membrane

recursively to the result. Importantly, the membrane is applied in the untrusted-to-veri�ed direction

to the function argument y and in the veri�ed-to-untrusted direction to the result of the function.

Technically, the function x is transformed towrap◦x◦unwrap, wherewrap , memb locout locin and

11
Google’s Caja partly automates the invocation of the membrane transformation by rewriting untrusted code. The

automation is orthogonal to the speci�cation and veri�cation of the membrane pattern itself, so we do not model it here.
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ismonpv Ψ1 Ψ2 , ∀a. {Ψ1 a} v a {a
′, ret a′. Ψ2 a

′}p

MembraneSpec

{ismonp locout Ψ1 Ψ2 ∗ ismonp ′ locinΨ2 Ψ1}

membrane locout locin
{w . ismonpw (li�Ψ1) (li�Ψ2)}

Fig. 9. Membrane interface (presupposing Ψ1,Ψ2 persistent)

unwrap , memb locin locout are recursive instantiations of membrane in the veri�ed-to-untrusted

and untrusted-to-veri�ed directions, respectively.

Membrane speci�cation. Our speci�cation of membrane formalizes the intuition that membrane
lifts transformations on locations to transformations on values. The speci�cation is shown in Fig. 9.

The de�ned predicate ismonpv Ψ1 Ψ2 means that v is a function that transforms values satisfying

the predicate Ψ1 to values satisfying the predicate Ψ2 (the progress bit p is needed for technical

reasons, that readers may ignore). The speci�cation of membrane says that if locout transforms

locations satisfying Ψ1 to values satisfying Ψ2 and locin does the reverse, then membrane locout locin
transforms values satisfying li�Ψ1 to values satisfying li�Ψ2, where li� is the predicate transformer

de�ned in Fig. 3. Hence, membrane really “lifts” the transformation on locations to a transformation

on values in a precise technical sense.

This speci�cation of membrane is very general, since it holds for any predicates Ψ1 and Ψ2. In

any use of membrane, these predicates can be instantiated to match what the arguments locout and

locin do. (Later, we show a speci�c instantiation with Ψ2 = lowloc.)
Despite the speci�cation’s generality, membrane is easily veri�ed against it. In the recursive

cases, the proof obligations match the inductive hypotheses precisely because of the concordance

between the pattern matches in the de�nitions of li� (Fig. 3) and membrane.

Public membrane. Next, we describe how the function membrane can be used to construct a

speci�c membrane, which we call the public membrane. This membrane is similar to the membrane

used in Google’s Caja library (Miller et al. 2008; Google, Inc. 2015). The public membrane maintains

a unique low-integrity shadow location for every high-integrity location that the veri�ed code

declares as important. When values cross from veri�ed to untrusted code, all nested high-integrity

locations in them are e�ectively “replaced” with the corresponding low-integrity shadows (this

transformation is implemented using membrane). Thus, the untrusted code only sees shadow

locations, not the high-integrity locations. Additionally, the public membrane provides the veri�ed

code special functions, shadowread and shadowwrite, to read and write the contents of the shadow

locations.

To understand why this is useful, consider a library that allocates an integer reference `, and

shares it with (untrusted) clients as an I/O bu�er. Clients are expected to write only positive integers

to `, although the library does not strictly require this and the library’s algorithms can execute

safely even if the integer is not positive. Over time, many clients of this library have been written.

Now, suppose that the library is updated to use di�erent algorithms that really require ` to always
be positive (else they crash). The obvious way to do this would be to rewrite the library to hold `
private, and to export two closures that read and write `, the latter only after checking that the

value being written is positive. However, this change breaks compatibility with all existing clients,
since they must now be rewritten to invoke the new closures to access `. The public membrane

o�ers a general solution to this problem. Rather than export closures, the library can deploy a
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makepub , λ . let tbl = ref bijempty in

let sync = makesync () in

(sync, tbl)

pubout , λ(sync, tbl) r1.

sync(λ . bijlookup (!tbl) r1)

pubin , λ(sync, tbl) r2.

sync(λ . bijlookup (bijinvert (!tbl)) r2)

pubwrap , λm. membrane (puboutm) (pubinm)

pubunwrap , λm. membrane (pubinm) (puboutm)

pubref , λmx1.

let r1 = ref x1 in

let r2 = ref (pubwrapmx1) in

let (sync, tbl) =m in

sync(λ . tbl ← bijinsertnew (!tbl) r1 r2);

r1

shadowread , λm r . pubunwrapm (!(puboutmr ))

shadowwrite , λm r x . puboutmr ← pubwrapmx

Fig. 10. Public membrane implementation

public membrane and declare ` as high-integrity. The membrane consistently replaces ` with a

low-integrity shadow, say `′, for the library’s clients. Importantly, the library’s clients don’t have
to change. After a client updates `′ (believing that it updated `), the library can access `′ using

shadowread and copy it to ` if the updated value is a positive integer. Additionally, whenever the

library updates ` internally, it can also copy the update to `′ using shadowwrite. This way, the

library can maintain its new invariant and retain complete compatibility with existing clients.

The functions comprising the public membrane are listed in Fig. 10.
12

The expression makepub ()
creates a public membrane (consistently denoted m), which comprises a pair (sync, tbl) where the

reference cell tbl contains a �nite partial bijection on locations protected by (the lock buried in) sync.
When a public membrane’s table sends location `1 to `2, we say that location `1 is a (high-integrity)

private location and location `2 its (low-integrity) shadow location. The functions pubout and pubin
transform between private and shadow locations by consulting the table. Both functions get stuck

on locations not in the table. The functions pubwrap and pubunwrap lift these to transformations

between values by applying the function membrane. E�ectively, pubwrap replaces all private

locations in the value passed to it with their shadow locations and pubunwrap does the opposite.

The expression pubref mv1 constructs a new private location initially containing value v1. In

addition, it allocates a shadow location (called r2 in the code) that initially contains the low-integrity

counterpart of v1. It stores an association between the two locations in m’s table. The shadow

location r2 can be retrieved from the table by applying either pubout or pubwrap to the private

location returned by pubref .

The function shadowread inspects a private location’s shadow location, converting its low-

integrity contents into a high-integrity value using pubunwrap, whereas shadowwrite updates a

private location’s shadow location after converting the given value to a low-integrity value using

pubwrap.

To use this public membrane interface, the veri�ed code �rst creates a new public membrane

using makepub. Subsequently, it allocates private locations that might �ow to untrusted code using

the function pubref instead of the language construct ref. Before sending any value to untrusted

code, it invokes pubwrap to replace all nested private locations with their shadows. Dually, after

receiving any value from untrusted code, it applies pubunwrap to replace nested shadow locations

with corresponding private locations. At any point, the veri�ed code can access shadow locations

12
We discuss the straightforward functions makesync, bijempty, bijinsertnew, bijlookup, and bijinvert in Appendix F.
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IsPrivval

isprivvalγ v , li� (isprivlocγ )v
MakePubSpec

{>} makepub () {mγ , retm. ismembraneγ m}

PubAllocSpec

{ismembraneγ m ∗ isprivvalγ v} pubref mv {`, ret `. isprivlocγ ` ∗ ` ↪→ v}

PubWrapSpec

{ismembraneγ m ∗ isprivvalγ v1} pubwrapmv1 {x2. lowvalx2}

PubUnwrapSpec

{ismembraneγ m ∗ lowvalv2} pubunwrapmv2 {x1. isprivvalγ x1}?
ShadowReadSpec

{ismembraneγ m ∗ isprivlocγ `} shadowreadm ` {x . isprivvalγ x }
?

ShadowWriteSpec

{ismembraneγ m ∗ isprivlocγ ` ∗ isprivvalγ v} shadowwritem `v {ret (). >}

Fig. 11. Public membrane interface

using shadowread and shadowwrite. Appendix E shows an example of how the public membrane is

used.

Public membrane speci�cation. The OCPL speci�cation of the public membrane is shown in

Fig. 11. The assertion ismembraneγ m associates a public membrane m to a logical name γ . The

abstract predicate isprivlocγ ` represents knowledge that location ` is a private location for the

membrane named γ , i.e., ` was previously allocated using pubref on the public membrane named γ .

The assertion isprivvalγ v is de�ned as li� (isprivlocγ )v by rule IsPrivval. In particular, the assertion

means that any location “extractable” from v is in the domain of γ ’s table. We call such values v
private values.13

The speci�cation rules are straightforward, so we explain only some salient points here. The

triple for pubref (rule PubAllocSpec) says that the application pubref mv returns a location ` ↪→ v
together with the knowledge that ` is a private location, represented by isprivlocγ `. It subsequently

becomes the responsibility of the public membrane’s client, who owns ` ↪→ v , to protect any high-

integrity state reachable from `—for example, by keeping ` hidden as we do in Appendix E. The

triples PubWrapSpec and PubUnwrapSpec say that the function pubwrapm converts private values to

low values, while pubunwrapm does the opposite. In particular, the output of pubwrap, being low,

can be freely shared with untrusted code. Also, pubunwrap has a non-progressive triple because

unwrapping an arbitrary low value v2 may apply pubinm `2 with some low-integrity location `2
unknown tom, and our implementation of pubin gets stuck in such cases.

14

The implementation of the public membrane satis�es this speci�cation. As an example, we brie�y

describe how we verify the pubwrap speci�cation, PubWrapSpec. First, we prove the following two

lemmas showing that for a valid membranem, puboutm and pubinm produce functions that satisfy

13
Reasoning with private values is fairly straightforward using the de�nition in Fig. 3 and derived rules like LiftApp (§2.2).

14
For simplicity, we do not specify the functionality of pubwrap and pubunwrap beyond “returns a low, resp., private value”.

More useful speci�cations would allow one to prove that, say, after wrapping private location `1 twice and obtaining

values v2 and v ′
2
, there exists a low location `2 such that v2 = `2 = v ′

2
.
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the predicate ismon.

{ismembraneγ m} puboutm { f . ismon progress f (isprivlocγ ) lowloc}

{ismembraneγ m} pubinm { f . ismon noprogress f lowloc (isprivlocγ )}

Next, we instantiate MembraneSpec (Fig. 9) with Ψ1 = isprivlocγ , Ψ2 = lowloc and the two lemmas

above to obtain

ismon progress pubwrap (isprivvalγ ) lowval
The triple PubWrapSpec follows by unfolding the de�nition of ismon (Fig. 9).

6 RELATED WORK
This paper focuses on the formal speci�cation and veri�cation of OCPs. While we know of only

rather preliminary prior work in this space, a major point of our paper is to observe that the tools

needed for e�ective veri�cation of OCPs are already to a large extent available—the pieces just need

to be assembled properly. In particular, our logic, OCPL, gets signi�cant mileage out of existing

veri�cation techniques, notably robust safety and concurrent separation logic. In the following, we

discuss related work on robust safety, the (limited amount of) existing work on speci�cation of

OCPs, and some other relevant work on object capabilities and ownership types.

Robust safety. The concept of robust safety arose in the context of verifying security protocols

that interact with adversaries. Early work used typing to prove “correspondence properties” for

cryptographic protocols modeled in the spi calculus (Gordon and Je�rey 2001). In their work on

the re�nement type-checker F7, Bengtson et al. (2011) generalized robust safety to a richer class

of integrity properties for a process calculus, RCF, with higher-order state. We inherit from their

work the basic idea of using a notion of low-integrity values and proving robust safety, but the

approaches di�er greatly in detail. First, we show how to apply this idea to OCPs, a completely

di�erent domain. Second, we show how low-integrity values are directly encodable in modern

separation logics, using a simple logical relation.

Object capabilities. There has been only very preliminary work on specifying and verifying

functional properties of object capabilities and OCPs. In his seminal paper on dynamic sealing,

Morris (1973) proposed informal reasoning principles for programmers using dynamic sealing, but

did not prove anything formally. Drossopoulou et al. (2015a) proposed predicates modeling trust

and risk and used those predicates to specify a capability-based escrow exchange example (Miller

et al. 2013). They focused on this one example, whereas we develop general speci�cations for

several OCPs. Further, they focus on syntactic speci�cations and do not de�ne the semantics of

their predicates. A subsequent manuscript (Drossopoulou et al. 2015b) bridges this gap to the

semantics, but their Hoare logic seems inadequate for the examples we consider, e.g., it lacks a rule

for dynamic allocation.

Perhaps the most closely related work to our own is that of Devriese et al. (2016). As discussed in

the introduction, they use a Kripke logical relation and a meta-property called e�ect parametricity

to verify integrity properties for several examples of capability-wrapped user code in a language

with higher-order state. There are several points of di�erence between our work and theirs. First,

we work in a concurrent separation logic rather than directly in a low-level logical relation. As a

result, in addition to being able to conduct our proofs at a much higher level of abstraction, we can

give compositional speci�cations for higher-order object capability patterns (i.e., libraries), whereas

they only verify speci�c programs that use object capabilities. We also exploit the notion of robust

safety in verifying integrity properties of code that uses OCPs, whereas corresponding arguments

only appear implicitly in their proofs. On the other hand, they develop semantic variants of the
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so-called “reference graph properties” from the literature on object capabilities. These properties

are important but they are also orthogonal to veri�cation and, hence, we do not examine them.

Last but not least, our proofs are machine-checked in Coq.

While specifying OCPs has received little attention so far, there has been a lot of other work

on object capabilities and OCPs. Responding to renewed interest in dynamic sealing, Sumii and

Pierce (2004) propose a bisimulation for proving contextual equivalences in a language with a

dynamic sealing primitive. Roughly, the examples they consider are pairs of expressions—“modules”

implementing the same “interface” using sealing—and the question they study is whether those

expressions are indistinguishable, even if their internal representations di�er. Bengtson et al. (2011)

use dynamic sealing to de�ne ideal implementations of cryptographic operations in RCF. They

o�er no general speci�cations for dynamic sealing analogous to the speci�cation in §3, but derive

instances of such a speci�cation as needed. Van Cutsem and Miller (2013, §§4.3–4.4) describe

a variant of our public membrane, which they use to implement proxy objects supporting so-

called language invariants (such as the reasoning enabled, in JavaScript, by the ability to “freeze”

object properties). Their focus is on the use of such membranes as an implementation technique,

rather than on veri�cation. Spiessens and Van Roy (2005); Spiessens (2007) and Murray (2010)

use, respectively, model- and re�nement-checking tools to establish certain safety and liveness

properties of abstract models of object capability systems, including some OCPs. To take one small

example, Murray shows that a speci�c model of an unsealing operation does not reveal a sealed

value unless a capability to that sealed value was passed (possibly indirectly) to the unsealing

operation by the context. Although useful, such properties cannot be directly used to verify clients

of the OCPs. In contrast, our goal is very di�erent: we write compositional speci�cations for

concrete implementations of OCPs and our speci�cations can be directly used to verify clients.

Ownership types. There are interesting similarities between the core mechanisms of OCPL and

prior work on ownership types (Clarke et al. 2013). In their seminal paper, Clarke et al. (1998)

proposed a type system based on what came to be called owners-as-dominators. Roughly, the idea

is to impose an ownership relation on objects, separating a public owner object from its hidden

representation objects and ensuring that an owner mediates all outside access to its representation.

Clarke et al. then proved that well-typed code preserves an invariant classifying data and enforcing

isolation according to owners-as-dominators. In a similar vein, OCPL classi�es locations as high-

integrity (private) vs. low-integrity (public), and enforces that high-integrity locations cannot be

accessed from low-integrity locations. However, OCPL is not a static type system, but rather a logic

for verifying the enforcement of integrity properties in a dynamically-typed setting. Moreover,

although OCPL requires that low locations contain low values, it does not stipulate any particular

ownership discipline (like owners-as-dominators) for how the user should achieve this.

Other researchers have proved deeper semantic properties of owners-as-dominators. Banerjee

and Naumann (2005a,b) prove relational parametricity theorems, using logical relations as a proof

technique for showing that one representation may be safely replaced by another. Patrignani

et al. (2011) show that an extension of owners-as-dominators can be used to prove relational

secrecy properties for the join calculus, based on a distinction between high- and low-integrity

values. In OCPL, we de�ne low-integrity values using a simple (implicitly step-indexed) logical

relation, and (like Patrignani et al.) our key meta-theorem concerns the interaction of user code

with untyped, untrusted code. However, despite these similarities to prior work, our concrete

goals are very di�erent: rather than reasoning about relational properties, we focus on verifying

functional speci�cations of OCPs and the robust safety of capability-wrapped code.
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7 CONCLUSION AND FUTURE WORK
Object capability patterns (OCPs) enable programmers to enforce invariants on the private state

of their objects, even when those objects are passed to untrusted code. In principle, this should

make it easier to write secure and correct programs, but in practice, programmers may use OCPs

incorrectly, resulting in subtle security �aws. In this paper, we develop OCPL, the �rst logic for com-

positionally specifying and verifying OCPs. We deploy it in reasoning about both implementations

and representative clients of several well-known OCPs, in the context of a simple but expressive

programming language with higher-order state.

We believe that using robust safety and separation logic to reason about OCPs scales to much

richer settings. The Firefox web browser, for example, uses an automatic and signi�cantly more

sophisticated membrane pattern to enforce the so-called same-origin policy (Mozilla 2016; Barth

2011). In ongoing work, we are exploring an extension of OCPL to reason about this system.

Furthermore, while the Iris proof mode enables relatively high-level Coq proofs, such manual

proofs are nonetheless often tedious and routine. Additional research is needed to scale such proofs

up to realistic languages and improve automation.
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A SEALING WITH LOW FUNCTIONS
In this appendix, we point out that, in the dynamic sealing OCP, representing proxy values as

low-integrity functions renders unsealing non-deterministic, forcing somewhat surprising changes

to otherwise “obviously safe” code.

Our implementation of sealing di�ers from Morris’ in one important respect. Ignoring synchro-

nization, Morris sealed a value v by returning a function (λk . tbl ← mapinsertnew (!tbl) k v ) for

extending the table.
15

To unseal a value f , Morris allocated a fresh location k , applied f k , and

looked for k in the table. This simple change—returning a function rather than a location—renders

UnsealAnySpec

{isunsealγ u ϕ} u v ′ {x . issealedγ x v ′ϕ}
?

unsound. There are two problems. First, the triple makes no assumptions about the value v ′. When

v ′ is a function f , there is no way to safely apply f k as f might have “unfair” access to otherwise

hidden state. An easy �x is to weaken the triple, assuming thatv ′ is low so that, ifv ′ is a function f ,

we know by assumption that we can apply f k (if we can mark k low—we can). Second, the triple

returns a value v such that issealedγ v v ′ϕ which means that subsequent applications u v ′ must

also return v . This is absurd! An adversary with values f1, f2 obtained by sealing values v1,v2 can,

for example, construct

f , let r = ref false in λk . let b = !r in (r ← (notb); (if b then f1 else f2) k )

that, when unsealed, oscillates betweenv1 andv2. An easy �x is to weaken the triple further, giving

up on deterministic unsealing.

We veri�ed Morris’ implementation of sealing against a weaker speci�cation, obtained by

replacing rule UnsealAnySpec in Fig. 5 with

UnsealLowSpec

{isunsealγ u ϕ ∗ lowvalv ′} u v ′ {x . ϕ x }
?

This switch to non-deterministic unsealing of low values comes at some cost. We must weaken the

non-progressive triples in our intervals speci�cation; for example, replacing MinAnySpec by

MinLowSpec

{isminγ imin ∗ lowvalv} iminv {n, ret n. >}
?

With these weaker rules, we can no longer verify the function check = λj . assert (imin j ≤ imax j )
in our intervals client. Applying check to a monster like the oscillating function f can cause the

assertion to fail. All is not lost, of course. We can rewrite check to read check = λj . let j = snap j in
assert (imin j ≤ imax j ) after extending our intervals library with the trivial snapshot function

snap = λx . seal (unseal x ). The point of snap is to replace an unpredictable function by a predictable

15
We are not so much interested in Morris’ implementation but in the fact that it returns a function. Other dynamic

sealing implementations return functions and otherwise have attractive properties (e.g., dispensing with the table). Ignoring

synchronization, the table-free implementation of sealing (Miller 2008; Taly et al. 2011)

let r = ref None in let seal = λx . r ← Some x in let unseal = λf . (r ← None; f (); valOf (!r )) in (seal, unseal)

shares this drawback with Morris’ implementation.
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Asymmetric signatures.

MakeSignSpec

ϕ persistent (∀v ) ϕ v ` lowvalv

{>}

makeseal ()
{v1v2 γ , ret (v1,v2). issignγ v1 ϕ ∗ isverifyγ v2 ϕ}

SignSpec

{issignγ signϕ ∗ ϕ v} signv {x ′. issignedγ v x ′ϕ}

VerifySpec

{isverifyγ verify ϕ ∗ issignedγ v v ′ϕ} verifyv ′ {ret v . >}

VerifyAnySpec

{isverifyγ verify ϕ} verifyv ′ {x . issignedγ x v ′ϕ}
?

VerifyLow

isverifyγ verify ϕ ` lowval verify

SignedLow

issignedγ v v ′ϕ ` lowvalv ′
SignedInv

issignedγ v v ′ϕ ` ϕ v

SignedAgree

issignedγ v1v ′ϕ ∗ issignedγ v2v ′ϕ ` v1 = v2

Asymmetric encryption.

MakeEncryptSpec

{>}

makeseal ()
{v1v2 γ , ret (v1,v2). isencryptγ v1 ∗ isdecryptγ v2}

EncryptSpec

{isencryptγ enc} encv {x ′. isctextγ v x ′}
DecryptSpec

{isdecryptγ dec ∗ isctextγ v v ′} decv ′ {ret v . >}

DecryptAnySpec

{isdecryptγ dec} decv ′ {x . isctextγ x v ′}
?

EncryptLow

isencryptγ enc ` lowval enc

CtextLow

isctextγ v v ′ ` lowvalv ′
CtextAgree

isctextγ v1v ′ ∗ isctextγ v2v ′ ` v1 = v2

Fig. 12. Public-key interfaces (derived from Fig. 5)

one:

SnapSpec

{issnapγ snap ∗ isintervalγ n1 n2v} snapv {i . isintervalγ n1 n2 i}

SnapLowSpec

{issnapγ snap ∗ lowvalv} snapv {i n1 n2, ret i . isintervalγ n1 n2 i}?
SnapLow

issnapγ snap ` lowval snap

With these changes, we can prove the assertion expression in our modi�ed intervals client succeeds

and the client is robustly safe.
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B PUBLIC-KEY INTERFACES FOR SEALING
In this appendix, we show that dynamic sealing can be used to implement ideal cryptographic sign-

ing/veri�cation as well as encryption/decryption primitives, and that the speci�cation of dynamic

sealing (Fig. 5) can be specialized to derive very general speci�cations for these primitives. Such

ideal primitives are sometimes used in the veri�cation of cryptographic protocols (Bengtson et al.

2011). While the observation that dynamic sealing can implement these cryptogrpahic primitives is

not new—Morris (1973) notes this even though he did not use the terms signing and encryption

back then—the observation that speci�cations for the cryptographic primitives can be derived from

those for dynamic sealing is new.

Signature/veri�cation. A signature/veri�cation primitive provides a function sign that creates a

low proxy for its argument. This proxy is usually called a signature. The proxy (signature) can be

veri�ed using a dual function verify, which when applied to the value returned by signv , returns

v and if the argument was not the output of sign, gets stuck. The important point is how sign
and verify are used in practice. In typical use, sign is held private by a piece of code that has been

veri�ed to apply sign only to values that satisfy a representation invariant ϕ. The verify function

is publicly available to everyone and anyone can use it to verify signatures created by the code

that holds sign. In this mode of use, signing/veri�cation transfers knowledge of the representation

invariant from the signer to the veri�er: since the signer only signs values with representation

invariant ϕ, and verify only returns previously signed values, the veri�er always knows that any

value returned by verify must satisfy ϕ.

It should be clear that sign and verify are quite similar to seal and unseal returned by makeseal ().
The top half of Fig. 12 shows that, in fact, seal and unseal are an implementation of sign and verify.

The speci�cation shown in this �gure is a speci�c instance of the general sealing speci�cation

from Figure 5, derived by de�ning the abstract predicates issign, isverify, and issigned to be isseal,
isunseal, and issealed, respectively; using UnsealLow to prove VerifyLow; and dropping SealLow. The

derived speci�cation says that makeseal () returns a pair of functions that behave like sign and

verify if the representation invariant ϕ implies lowval. This condition is necessary since verify
returns previously signed values to untrusted code, so signed values should always be low—in

cryptographic terms, signatures provide no secrecy. Additionally, the speci�cation says that the

value returned by verify always satis�esϕ (rule VerifyAnySpec), that verify itself is low (rule VerifyLow)

so verify can be shared safely with untrusted code, and that the output of sign is low (rule SignedLow)

so signatures can also be shared safely with untrusted code. On the other hand, sign itself is not

low, so it should not be shared with untrusted code.

Encryption/decryption. An encryption/decryption primitive provides a function enc that creates

a low proxy for its argument. A dual function dec converts the proxy back to the original argument.

Typically, encryption/decryption is used by holding dec private in some piece of code, and making

enc public. This allows anyone to encrypt a secret using enc and share it freely, with the guarantee

that only the code holding dec can ever access the secret.

Again, enc and dec look similar to seal and unseal returned by makeseal () and the bottom half

of Fig. 12 formalizes this intuition by specializing the speci�cation of Fig. 5 to match the intuitive

description of encryption/decryption. The abstract predicates isencrypt, isdecrypt, and isctext are

de�ned to be isseal, isunseal, and issealed, respectively. Importantly, the speci�cation says that

makeseal () returns functions that behave like enc and dec (rule MakeEncryptSpec), that decrypting a

previously encrypted value v returns v (rules EncryptSpec and DecryptSpec), and that the encryption

function and ciphertexts are low (rules EncryptLow and CtextLow) so they can be shared with
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untrusted code. However, the decryption function is not low, so it should not be shared with

untrusted code.

C INTERVALS INTERFACE
The following rules constitute the full speci�cation of the intervals library in §3.

Progressive triples.

IntervalsSpec

{>}

intervals ()
{v1v2v3v4 γ , ret (v1,v2,v3,v4). ismakeintγ v1 ∗ isminγ v2 ∗ ismaxγ v3 ∗ issumγ v4}

MakeintSpec

{ismakeintγ mk} mk n1 { f . ismakeint′γ n1 f }

Makeint
′
Spec

{ismakeint′γ n1 f }
f n2
{i . isintervalγ (minn1 n2) (maxn1 n2) i}

MinSpec

{isminγ imin ∗ isintervalγ n1 n2 i} imin i {ret n1. >}

MaxSpec

{ismaxγ imax ∗ isintervalγ n1 n2 i} imax i {ret n2. >}

SumSpec

{issumγ isum ∗ isintervalγ n1 n2 i} isum i { f . issum′γ n1 n2 f }

Sum
′
Spec

{issum′γ n1 n2 f ∗ isintervalγ n′1 n
′
2
i ′}

f i ′

{j . isintervalγ (n1 + n
′
1
) (n2 + n

′
2
) j}

IntervalInv

isintervalγ n1 n2 i ` n1 ≤ n2

IntervalAgree

isintervalγ n1 n2 i ∗ isintervalγ n′1 n
′
2
i

` n1 = n
′
1
∗ n2 = n

′
2

Non-progressive triples.

MinAnySpec

{isminγ imin} iminv {n1 n2, ret n1. isintervalγ n1 n2v}?

MaxAnySpec

{ismaxγ imax} imax v {n1 n2, ret n2. isintervalγ n1 n2v}?

SumAnySpec

{issumγ isum} isumv1 { f n1 n2, ret f . isintervalγ n1 n2v1 ∗ issum′γ n1 n2 f }?

Sum
′
AnySpec

{issum′γ n1 n2 f } f v2 {i n′1 n
′
2
, ret i . isintervalγ n′

1
n′
2
v2 ∗ isintervalγ (n1 + n

′
1
) (n2 + n

′
2
) i}

?

Low values.

IntervalLow

isintervalγ n1 n2 i ` lowval i
Makeint

′
Low

ismakeint′γ n1 f ` lowval f
MakeintLow

ismakeintγ mk ` lowvalmk
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MinLow

isminγ imin ` lowval imin
MaxLow

ismaxγ imax ` lowval imax

Sum
′
Low

issum′γ n1 n2 f ` lowval f
SumLow

issumγ isum ` lowval isum

D BLOCKING CARETAKERS
In this appendix, we brie�y present a simpler implementation of API caretakers:

16

makecaretaker , makelock′ enable , release

wrap , λct f x . syncwith ct (λ . f x ) disable , acquire

The idea is that, if we are happy to let wrappers block until a caretaker is enabled, we can dispense

with the enabled �ag used in §4. In this implementation, a caretaker is a lock. The functionmakelock′

allocates a fresh lock, initially locked. The function syncwith is analogous to sync, except that it

takes the lock to use as an initial argument. To disable and enable wrappers, we simply acquire and

release the lock they need. This implementation also satis�es the API caretaker speci�cation (Fig. 7).

E PUBLIC MEMBRANE CLIENT
In this appendix, we further illustrate the public membrane by describing a simple client program

that uses it. First, we de�ne the following auxiliary function, getint. This function presupposes that

we have some invariant on a private integer location, r , and that we want to periodically update

r by “merging” its contents with those of its shadow location, using some merge function f that

preserves the invariant.

getint , λm f r . let n1 = !r in let x2 = shadowreadmr in

if isint x2 then

let n3 = f n1 x2 in

let = if n1 , n3 then r ← n3 else () in

let = if x2 , n3 then shadowwritemr n3 else () in

n3

else (shadowwritemr n1;n1)

If the private location r and its shadow contain integers n1 and n2, the code applies f n1 n2 to obtain

the “merged” integer n3, updates r and its shadow, and returns n3; otherwise, the code overwrites

the shadow’s contents with (and returns) n1.
Our illustrative client program is a private up/down counter with increment and decrement

functions, and private lower and upper limits. The invariant we have in mind is that the counter

always remains within these limits. However, the counter also exposes shadow locations for the

lower and upper limits to its untrusted context. The context can freely update these shadow lower

and upper limits. However, these changes are propagated to the private locations (using getint)

16
We discuss the straightforward functions makelock′, release, acquire, and syncwith in Appendix F.
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only if the changes maintain the intended invariant.

client , letm = makepub () in

let lo = pubref m 0 in let c = ref 0 in let hi = pubref m 0 in

let sync = makesync () in

let use = λ . sync(λ . assert !lo ≤ !c; assert !c ≤ !hi)

let getlimits = λ . let n = !c in

let a = getintm (λn1 n2. if n2 ≤ n then n2 else n1) lo in

let b = getintm (λn1 n2. if n ≤ n2 then n2 else n1) hi in

(a,b)

let decr = λ . sync
(
λ . let n = (!c ) − 1 in

let b = fst (getlimits ()) ≤ n in

if b then c ← n else ();b
)

let incr = λ . sync
(
λ . let n = (!c ) + 1 in

let b = n ≤ snd (getlimits ()) in

if b then c ← n else ();b
)

let lo′ = pubwrapm lo in let hi′ = pubwrapm hi in

(use, lo′, hi′, incr, decr )

The client’s private state comprises a public membrane m, a private counter c and private limits lo
and hi, subject to the representation invariant !lo ≤ !c ≤ !hi (i.e., the counter respects its limits).

The client returns (i) a simple function use that, when applied, simply asserts the representation

invariant (and that could be extended to o�er some service to the counter’s clients), (ii) the shadow

locations lo′ and hi′ that substitute lo and hi for the surrounding untrusted code (the untrusted code

may freely change these at any time) and (iii) increment and decrement functions, incr and decr ,
that either change the counter c and return true or (when changing the counter would violate its

current limits) return false. Prior to changing the counter, incr and decr copy the shadow locations

lo′ and hi′ into lo and hi using the function getint, if doing so will not break the representation

invariant.

Using the rules of OCPL, we prove that client is robustly safe, meaning that no context can

exploit the returned values use, incr , decr , lo′ and hi′ in a way that violates the assertions about

the representation invariant in use. To do this, we �rst prove that client satis�es the following

triple: {>} client {x . lowvalx } . One key step in this proof is showing that lo′ and hi′ are both low.

This follows because lo′ and hi′ are obtained from pubwrap and the postcondition of pubwrap (rule

PubWrapSpec, Fig. 11) says that the value it returns is low. Robust safety follows immediately from

Theorem RobustSafety applied to this triple.

F LIBRARY FUNCTIONS
In this appendix, we specify the implementations of locks, �nite maps, and �nite bijections used in

our examples. As nothing here is original or terribly interesting, we relegate many implementation

and veri�cation details to our Coq development.

Locks and synchronization. We specify locks and synchronization in Fig. 13. Rules LockedExclusive–

AcqireSpec constitute a CAP-style lock speci�cation (Dinsdale-Young et al. 2010) satis�ed by, for
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Initially locked locks.

LockedExclusive

lockedγ ∗ lockedγ ` ⊥
MakeLock

′
Spec

{>} makelock′ () {lkγ , ret lk. islockγ lk R ∗ lockedγ }

ReleaseSpec

{islockγ lk R ∗ lockedγ ∗ R} release lk {ret (). >}

AcqireSpec

{islockγ lk R} acquire lk {ret (). lockedγ ∗ R}

Initially unlocked locks.

MakeLockSpec

{R} makelock () {lkγ , ret lk. islockγ lk R}

Synchronization.

IsSync

issync sync R , �∀Q . {R} e {v . R ∗Q } −∗
{>} sync (λ . e ) {v . Q }

SyncWithSpec

{islockγ lk R} syncwith lk {v . issyncv R}

MakeSyncSpec

{R} makesync () {v . issyncv R}

Fig. 13. Lock and synchronization interface

example, the evident implementation of spin locks using CAS. The assertion islockγ lk R represents

knowledge that the value lk is a lock with abstract name γ protecting resource R. The assertion

lockedγ represents ownership of the lock named γ . Thus, for any resource R,

• makelock′ () returns a new, locked lock lk protecting R (MakeLock
′
Spec);

• release lk gives up lock lk and resource R, returning unit (ReleaseSpec); and

• acquire lk grabs lock lk and the resource R it protects, returning unit (AcqireSpec).

This speci�cation is atypical in that makelock′ constructs a locked lock, a feature needed only to

argue that our caretaker speci�cation is just a specialized lock spec (see the implementation of

“blocking caretakers” in Appendix D). MakeLockSpec embodies a typical CAP-style lock speci�cation:

it speci�es the evident wrapper around makelock′ and release that consumes resource R in order to

construct a new, unlocked lock lk protecting resource R.

Rules IsSync–MakeSyncSpec specify the following simple library, readily veri�ed against any lock

implementation.

syncwith , λlk f . acquire lk; let r = f () in release lk; r

makesync , λ . let lk = makelock () in syncwith lk

Given a lock lk and a thunk f , the function syncwith applies f while holding the lock, returning

whatever f () returns. The function makesync returns syncwith lk for a fresh lock lk. In specifying

makesync, we follow Turon et al. (2013). De�nition IsSync is the key. It says that to prove sync (λ . e )
returns a value satisfyingQ , it su�ces to show that e , when given access to the resource R protected

by sync’s lock, (i) returns a value satisfying Q and (ii) preserves R.



34 David Swasey, Deepak Garg, and Derek Dreyer

MapEmptySpec

ismapmapempty ∅

MapInsertNewSpec

{ismapmap f ∗ x < dom f } mapinsertnew map (ι x )v {map′. ismapmap′ f [x 7→ v]}

MapLookupPartialSpec

{ismapmap f } maplookupmap (ι x ) {y. f x = y}
?

Fig. 14. Finite map interface

BijEmptySpec

isbij bijempty ∅ ∅
BijInvertSpec

{isbij bij f f ′} bijinvert bij {bij′. isbij bij′ f ′ f }

BijInsertNewSpec

{isbij bij f f ′ ∗ x < dom f ∗ x ′ < dom f ′}

bijinsertnew bij (ι x ) (ι x ′)
{bij′. isbij bij′ f [x 7→ ι x ′] f ′[x ′ 7→ ι x]}

BijLookupPartialSpec

{isbij bij f f ′} bijlookup bij (ι x ) {x ′, ret ι x ′. f x = ι x ′ ∗ f ′ x ′ = ι x }
?

Fig. 15. Finite bijection interface

Finite maps. We specify functional �nite maps in Fig. 14. The spec is parameterized by an injection

ι : X → Val from some type X (our examples use locations) to values. The assertion

ismapmap f

denotes knowledge that value map represents the �nite partial function f : X
�n

⇀ Val. MapEmptySpec

says that value mapempty represents the empty map. MapInsertNewSpec speci�es a special case of

insertion. MapLookupPartialSpec speci�es a partial lookup operation. The evident implementation of

�nite maps using association lists satis�es this spec when X enjoys decidable equality.

Finite bijections. We specify functional �nite partial bijections in Fig. 15. As with �nite maps, the

spec is parameterized by an injection ι : X → Val from some type X to values. The assertion

isbij bij f f ′

denotes knowledge that value bij represents the �nite partial bijection f , f ′ : X
�n

⇀ Val in the sense

that for every x ∈ X and value v ′, if f x = v ′, then there exists x ′ ∈ X such that v ′ = ι x ′ and

f ′ x ′ = ι x . Representing a bijection as a pair of �nite maps (as speci�ed in Fig. 14) leads to a natural

implementation of this speci�cation.


	Abstract
	1 Introduction
	2 Robust safety and OCPL
	2.1 A higher-order concurrent heap language with assertions
	2.2 A program logic for reasoning about OCPs
	2.3 Metatheory

	3 Dynamic sealing
	4 Caretaker
	5 Membrane
	6 Related work
	7 Conclusion and Future Work
	Acknowledgments
	References
	A Sealing with low functions
	B Public-key interfaces for sealing
	C Intervals interface
	D Blocking caretakers
	E Public membrane client
	F Library functions

