Reasoning about Risk and Trust in an Open Word

Sophia DrossopouldyJames Nobf Mark S. Miller®, and Toby Murra§

1 Imperial College Londomcd@doc.ic.ac.uk
2 Victoria University of Wellingtonk jx@ecs . vuw.ac.nz
3 Google, Incerights@google.com
4 NICTA and UNSWtoby .murray@nicta.com.au

Abstract. Contemporary open systems use components developed by different
parties, linked together dynamically in unforeseen constellations. Code needs to
live up to strictsecurity requirementsand ensure the correct functioning of its
objects even when they collaborate with external, potentially malicious, objects.

In this paper we propose special specibcation predicates that model risk and trust
in open systems. We specify Miller, Van Cutsem, and TullohOs escrow exchange
example, and discuss the meaning of such a specibcation.

We propose a novel Hoare logic, based on four-tuples, including an invariant
describing properties preserved by the execution of a statement as well as a post-
condition describing the state after execution. We model specibcation and pro-
graming languages based on the Hoare logic, prove soundness, and prove the key
steps of the Escrow protocol.

1 Introduction

Traditional systems designs are based on a closed world assumption: drawing a sharp
border around a system where the system as a whole can be trusted because every com-
ponent inside the border is known to be trustworthy, a@asbned?25] by trustworthy
mechanisms. Open systems, on the other hand, have an open world assumption: they
must interact with a wide range of component objects with different levels of mutual
trust (or distrust) N and whose conbguration dynamically changes. Given a method
request:.m (y), what can we conclude about the behaviour of this request if we know
nothing about the receiver?

In this paper, we lay the foundations for reasoning about the correctness of these
kinds of open systems. Building on the object-capability security model [30] we intro-
duce a brst-class notion tiist, where we write © obeys specO to mean that object
o can be trusted to obey specibcatmrec. The obeys predicate is hypothetical: there
is no central authority that can assign trustworthiness (or not) to objects; there is no
trust bit that we can test. Ratheg @eys specO is an assumption that may or may not
be true, and we will use that assumption to reason by cases. If we trust an object, we
can use the objectOs specibcation- to determine the results of a method call on that
object. If we donOt trust the object, we determine the maximum amount of damage the
call could do: theisk of calling a method that turns out not to meet its specibcation.

Risks are effects against which we want to guard our objects: bounds on the poten-
tial damage caused by calls to untrusted objects. The key to delineating risks are two fur-
ther hypothetical predicatedsay.Accessand MayAffect We write MayAffect o, p)

to mean that it is possible that some method invocation would affect the object or

propertyp, and May.Accesso, p) to mean that it is possible that the code in object
could potentially gain a capability to accestd his brst-class notion of risk comple-
ments our brst-class notion of trusttay.Accessand MayAffectlet us reason about
the potential damage to a system when one or more objects are not trustworthy.

Our complementary notions of trust and risk are set within a very Rexible specib-
cation language, and supported by an Hoare logic, enabling us to reason whether or not
objects can be trusted to meet their specibcations, providing sufbcient security guar-
antees while mitigating any risks. Building on our earlier work [15, 17] we formalise
and prove correctness, trust, and risk for the Escrow Exchange [31] a trusted third party
that manages exchanges of different goods (e.g. money and shares) between untrust-
ing counterparties [44]. We were surprised to Pnd that the specibcation for the Escrow
Exchange is weaker than originally anticipated in two signibcant aspects: the escrow
cannot guarante¢hat a reported successful transaction implies a) that the participants
were trustworthy, nor that b) the participants are exposed to no risk by an untrustworthy
participant (but we were able to characterize the risk to which participants are exposed).
We were even more surprised to realize that itipossible to writean escrow which
would give guarantees a) and b) N all the more striking given that a co-author is one of
the original developers of the escrow example.

Common approaches to reasoning about programs cannot deal with the escrow ex-
change example. Most program specibcation and veribcation methods have an implicit
underlying assumption that components are meant to be trustworthy (i.e. meet their
specibcations). Our approach Prst makes that assumption explicgb&s), lets us
reason hypothetically and conditionally about those trust assumptions, even in cases
where those assumptions fail (by quantifying risk yiéay.Accessand May.Affect).

Paper OrganizationSection 2 introduces the Escrow Exchange example, shows why a
traditional specibcation is not descriptive enough and why a naive implementation is not
robust enough. Section 3 introduces our constructs and Hoare logic for modelling trust
and risk, which we apply to a revised implementation of the Escrow to reason formally
about its correctness. Section 4 discusses related work, and Section 5 concludes.

Disclaimers Throughout this paper, we make the simplifying assumptions that no two
different arguments to methods are aliases, that the program is executed sequentially,
that we can quantify over the entire heap, that objects do not breach their own encapsu-
lation or throw exceptions, that machines on open networks are not mutually suspicious,
and that any underlying network is error-free. This allows us to keep the specibcations
short, and to concentrate on the questions of risk and trust. Aliasing, concurrency, quan-
tibcation, conbPnement, network errors, and exceptions can be dealt with using known
techniques, but doing so would not shed further light on the questions we address.

Contribution This paper extends earlier informal work presented at the PLAS work-
shop [17]. Here we contribute the full formal foundations of the system, delatings,
MayAccessand MayAffectin the context of theFocalandChainmaillanguages (de-

tails in the full technical report [18]). We present a novel Hoare logic based on four-
tuples to specify properties preserved during execution: this allows us to model trust
and delineate risk even when a methodOs receiver is unknown. We use our logic to
prove formally that the key steps of the escrow example meet the specibcation.

2 Escrow Exchange

Figure 1 shows a brst attempt to implement an escrow exchange, also shown in previous
work [31, 36]. We model both money and goodsthiy ses (a resource model proposed

in E [32]). The calldst .deposit (amt, src) will either transferamt resources from

the src purse to theist purse and return true, or do nothing and return false. A new,
empty purse can be created at any time by asking an existing pusse ¢at N the

new purse has a zero balance but can then be Pllegkyiasit.

1lmethod deal_versionl() {

2

3 // make temporary money Purse

4 escrowMoney = sellerMoney.sprout

5 // make temporary goods Purse

6 escrowGoods = buyerGoods.sprout

7

8 res = escrowMoney.deposit (price, buyerMoney)
9 if (!res) then

10 // insufficient money in buyerMoney

11 // or different money mints

12 { return false }

13

14 // sufficient money; same mints.

15 // price transferred to escrowMoney

16 res = escrowGoods.deposit (amt, sellerGoods)
17 if (!res) then

18 // insufficient goods in sellerGoods

19 // or different goods mints

20 { // undo the goods transaction

21 buyerMoney.deposit (price, escrowMoney)
22 return false }

23

24 // price in escrowMoney; amt in escrowGoods.
25 // now complete the transaction

26 sellerMoney.deposit (price, escrowMoney)

27 buyerGoods.deposit (amt, escrowGoods)

28 return true

29| }

Fig. 1. First attempt at Escrow Exchange deal method

The goal of the escrow is to exchanget goods forprice money, between the
purses of a seller and buyer. To make the exchange transactional, we use two private
escrowpurses, one for on each side of the transaction (money and goods). Lines 3D6
of Figure 1 show how we Prst set up the escrow purses, by sprouting two new purses
(escrowMoney andescrowGoods) from their respective input purses.

Itis important that the escrow purses are newly created within the method, and can-
not have been manipulated or retained by the buyer or seller, which is why the escrow
askssellerMoney to make one, antduyerGoods to make the other. The requirements
of an open system means that the escrow method cannot have the escrow purses before
the transaction, because the escrow cannot know the right kind of purses to create, and
there is no central trusted authority that could provide them. Buyers and sellers cannot
provide escrows purses directly, precisely because we must assume they donOt trust each
other: if they did, they wouldnOt need to use an escrow.

Second, we attempt to escrow the buyerOs money by transferring it frem,the
Money purse into the newscrowMoney purse N line 8. If thisdeposit request re-
turns true, then the money will have been transferred. If the deposit fails we abort the
transaction. Third, we attempt to escrow the sellerOs goods N line 16, again by deposit-
ing them into the other escrow purse. If we are unsuccessful, we again abort the transac-
tion, after we have returned the escrowed money to the buyer N lines 21 and 22. At this
point (line 26) the deal method should have sole access to sufbcient money and goods in
the escrow purses. The method completes the transaction by transferring the escrowed
money and goods into the respective destination purses N lines 26 and 27. Thanks to
the escrow purses, these transfers should not fail, and indeedz if versionl is
called in good faith it will carry out the transaction correctly. Unfortunately, we cannot
assume good faith in a mutually untrusting open system.

2.1 The failure ofdeal_versionl

The method in Figure 1 does not behave correctly in an open system. The critical prob-
lems are assumptions about trust: both the code and the specibcation implicitly trust the
purse objects with which they interact.

Imagine if sellerMoney was a malicious, untrustworthy object. At line 4, the
sprout call could itself return a malicious object, which would then be stored in
escrowMoney. At line 8, escrowMoney.deposit (price, buyerMoney) would let
the maliciousescrowMoney purse steal all the money out bfiyerMoney purse, and
still return false. As a result, the seller would lose all their money, and receive no
goods! Even if the seller was more cautious, and themselves sprouted a special tempo-
rary purse with a balance of exactlyice to pass in asellerMoney, they would still
lose all this money without any recompense.

Perhaps there is something else we could do f\rasted method on every object,
say, that returns rue if the object is trusted, anda1se otherwise? The problem, of
course, is that an object that is untrustworthy is, well, untrustworthy: we cannot expect
atrusted method ever to returfialse. This leads to our debnition of trust: trust is
hypothetical and in relation to some specibcation of expected behaviour.

2.2 Modelling Trust and Risk: obeys ,May.Accessand May.Affect

The key claim of this paper is that, to reason about the behaviour of systems in an
open world, we need specibcations that let us talk about trust and risk explicitly. In
the rest of this section, we informally introduce three novel specibcation language con-
structs: obeys to model trust, andUay.Accessand MayAffectto model risk, show

how they can be used to specify the purse and escrow examples, and argue a revised
deal_version2 method can meet that specibcation. Section 3 formalises these ideas.

To model trust, we introduce a special predicaibeys, of the formo obeys Spec
which we interpret to mean that the current object trudtsadhere to the specibcation
Spec. Because we generally canOt be sure that an object N especially one supplied from
elsewhere in an open system N can actually be trusted to obey a particular specibcation,
our reasoning and specibcations are hypothetical: analysing the same piece of code
under different trust hypotheses N i.e. assuming that particular objects may or may not
be trusted to obey particular specibcations.

Thus,if objecto can be trusted to obey specibcatigsec, and spec had a pol-
icy describing the behaviour of some methadhen we may expect the method call
o.m(...) to behave according to that policy N otherwise, all bets are off.

To model risk, we introduce predicatéday.Accesand May.Affect which express
whether an object may read or may affect another object or property. We will write
MayAffect(o, p) to mean that it is possible that some method invocation amould
affect the object or property. Similarly, we will write May.Accesso, p) to mean that
it is possible that the code in objegtcould potentially gain a capability to access to
o N that is, a reference te. In practice, May.Accesso, p) means thap is in the
transitive closure of the points-to relation on the heap starting fsancluding both
public and private references.

2.3 Valid Purse: Specifyingpurse

Using obeys, May.Access and May.Affect we write thevalidpurse specibcation
in Figure 2 that makes trust and risk explicit.

validPurse consists of bve policiesol_deposit_1 andpol_deposit_2 taken
together distinguish between a successful and an unsuccessful deposit, signalled by re-
turning t rue or false respectively. In the brst case, imn1_deposit_1 where the
result ist rue, argumentrc must have been a valid purse-¢ obeys validPurse)
which can trade with the receiver, ardc must have sufpcient balance. In the sec-
ond case, i.erol_deposit_2 where the result isalse, eithersrc was not a valid
purse, or would not trade with the receiver, or had insufpcient funds. To quote Miller et
al. [32]: @\ reported successful deposit can be trusted as much as one trusts the purse
one is depositing in®.

The last two lines in the postcondition Bb1_deposit_1 andPol_deposit_2
provide framing conditions. In the prst case, the transaction will happen, but all other
purses will be unmodibed (line 14 in bgure 2) , whereas in the second case no purses
will be modibed (line 24 in bgure 2). Another framing condition, appears on lines
15, 25 and 36 of bgure 2, and requires that the methods do not leak access to any
validPurse Object. In other words, i&fter the method call, a pre-existinghas ac-
cess to avalidrurse objectp, theno already had access taebeforethe call.

Pol_sprout promises that the result is a trusted purse that can trade with the re-
ceiver, no other valid purseOs balance is affected, and references have not been leaked.
Pol_can_trade_constant guarantees that whether or not two purses can trade

with each other cameverchange, no matter what code is run. This is another key

[

specification ValidPurse {
field balance // Number

N

4 policy Pol_deposit_1 // 1%t case:

5 amte N

6 { res = this.deposit (amt, src) }

7 res — (

8 // TRUST

9 srcObeySpreValidPurse A CanTrade (this, src) pre

10 // FUNCTIONAL SPECIFICATION

11 A O<amt<src.balancepre A

12 this.balance=this.balancepret+amt A
src.balance=src.balancepre—amt A

13 //RISK

14 Vp. (pobeys,r.ValidPurse A pé€ {this,src} —
p.balance=p.balancepr) A

15 Yo:preObject. Vpobeys,..vValidPurse.
MayAccesgo,p) — MayAccesg,. (o,p))

16

17| policy Pol_deposit_2 // 2™ case:

18 amte N

19 { res = this.deposit (amt, src) }

20 —res — (

21 // TRUST and FUNCTIONAL SPECIFICATION

2 - (src obeys,.. ValidPurse A CanTrade (this,src)pre A
0<amt<src.balancepre) A

23 // RISK

24 Vp. (pobeyspreValidPurse—) p.balance=p.balancepre) A

25 Yo:preObject. V pobeys,..ValidPurse.

MayAccesgo,p) — MayAccesSg e (o,p))

Fig. 2. validPurse specibcation

ingredient of our approach: we can require that our code must preserve properties in the
face of unknown code.

Pol_protect_balance guarantees that a valid purg®s balance can only be
changed: N.MayAffect(o, p.balance) N by an objecto that may access that purse:
MayAccesgo, p) .

Finally, the abstract predicateanTrade holds when twopurses can trade with
each othercanTrade must be ref3exive, but does not require that its arguments have
the same class. It guarantees thaposit can transfer resources from one purse to
another. This could involve a clearing house, interbank exchange, or other mechanisms
abstract predicates can be implemented in different ways.

The use of assertions about the pre-state in methodsO postconditions increases the
expressive power of our specibcations. For example, consider:

(A) amt € N {res=this.deposit (amt, src) } res — scr obeys,,.validPurse
This allows us to deduce properties about the pre-state by observing the result of the

27 policy Pol_sprout

28 true

29 { res = this.sprout() }

30 // TRUST

31 resobeys ValidPurse A CanTrade (this,res)pre A

32 // FUNCTIONAL SPECIFICATION

33 res.balance=0 A

34 // RISK

35 Vp. (pobeys,,eValidPurse —
p.balance=p.balancepre A res # p) A

36 Yo:preObject. V pobeys,..validPurse.

MayAccesgo,p) — MayAccesg,e (o,p))
37
38 policy Pol_can_trade_constant

39 true
40 { any_code }
41 YV prsl,prs2obeys,..validPurse.

CanTrade (prsl,prs2) <— CanTradepr (prsl,prs2)
42
43 policy Pol_protect_balance

44 // RISK

45 V o,p:0Object. pobeysvalidPurse A
MayAffect(o, p.balance) — MayAccesgo, p)
46| }

47
4| abstract predicate CanTrade (prsl,prs2) 1is reflexive

Fig. 2. validpPurse specibcation (contd.)

method call. Such a specibcation cannot be easily translated into one which does not
make use of this facility, as in:

(B) scr obeysvalidpurse A amt € N {res=this.deposit (amt, src)} res

(B) differs from (A) in that (B) requires us to establish thatr obeysvalidpurse

before making the call, while (A) does not.

2.4 Establishing Mutual Trust

An escrow must build a two-way, trusted transfer by combining one-way transfers.
Frompol_deposit_1 we obtain that the callesi=dest .deposit (amt, src) lets
us concluderes1A dest obeysvalidPurse— srcobeysvalidPurse. This trustis
just one way: from the destination to the source purse. We can establish mutual trust be-
tween two purses by then attempting to perform a second deptsé reverse direction
from destination to sourceies2=src.deposit (amt, dest) Which in turn gives
res2A srcobeysvalidPurse— dest obeysvalidPurse. Reasoning conditionally,
on a path wherees1 A res2 are true, we can then establish mutual trust:

dest obeys validPurse +— srcobeys validPurse
We establish this formally in Section 3.4, having only argued informally earlier [17, 36].

As with much of our reasoning, this is both conditional and hypothetical: at a partic-
ular code point, when twaeposit requests have succeeded (or rather, that they have
bothreportedsuccess) then we can conclude that either both are trust worthy, or both
are untrustworthy: we have onhypotheticaknowledge of theobeys predicate.

2.5 Escrow with Explicit Mutual Trust

ilmethod deal_version2() // returns Boolean
2| {

3 // setup and validate Money purses

4 escrowMoney = sellerMoney.sprout

5 res=escrowMoney.deposit (0, sellerMoney)

6 if (!res) then {return false}

7 res = buyerMoney.deposit (0, escrowMoney)
8 if ('res) then {return false}

9 res = escrowMoney.deposit (0, buyerMoney)
10 if (!'res) then {return false}

11

12 // setup and validate Goods purses

13 // similar to lines 4—10 from above, but for Goods
14

15 // make the transaction

16 // as 8—29 from Fig.1l

17| }

Fig. 3. Reviseddeal_version2 method

Two way deposit calls are sufbcient to establish mutual trust, but come with risks.
For example, as part of validating that a buyerOs purse the sellerOs purse, we must pass
the buyerOs purse as an argumentiamsit call to the sellerOs purse, e.g.

sellerMoney.deposit (0, buyerMoney)
If the sellerOs purse is not in fact trustworthy, then it can take this opportunity to steal all
the money in the buyerOs purse before the transaction ofPcially starts, evesmif the
that is supposed to be deposited is

We can minimise this risk by careful use of escrow purses. Rather than mutually
validating buyers and sellers directly, we can create an escrow purse on the destination
side of the transaction (the sellerOs money and the buyerOs goods) and then mutually
validate the buyerOs and sellers actual purses against the escrow N resulting in a chain
of mutual trust between the destination purse and the escrow purse, and the escrow
purse and the source purse. This allows us to hypothesise that the source and destination
purses are mutually trusting before we start on the transaction proper.

The resulting escrow method is in Figure 3. Line 4 creates@& owMoney purse
and then lines 5D10 hypothetically establish mutual trust betweessth&wMoney,
sellerMoney, andbuyerMoney purses. TheellerMoney purse doesnOt need to val-
idateescrowMoney explicitly (sellerMoney .deposit (0, escrowMoney)) because

thesprout method specibcation says sprouted purses can trusted as much as their par-
ent purses. (Figure 4 illustrates the trust relationships.) If any of thesesit request

sprout

” deposit
(llIlC 4) (1ine 7)
seller escrow buyer
Money deposit Money deposit Money
(line 5) (line 9)

Fig. 4. Establishing Mutual Trust. Dashed arrows show purse validation.

fail, we abort. Afterwards we do exactly the same, but for goods purses rather than
money purses. Finally, we carry out the escrow exchange itself, in exactly the same
manner as lines 8029 of the brst implementation in Figure 1.

2.6 Specifying the Mutual Trust Escrow

Figure 5 shows a specibcation for the revised escrow deal method from Figure 3.
This specibcation uses conditional and hypothetical reasoning to distinguish four cases,
based on the value of the result and the trustworthiness of the participants. We use these
auxiliary depnitions:

GoodPrs={ p | p obeys,. ValidPurse }

PPrs::{ sellerMoney, sellerGoods, buyerMoney, buyerGoods }

OthrPrs=GoodPrs \ PPrs

BadPPrs=PPrs \ GoodPrs

The setrprs contains the fouparticipant pursepassed as argumentsidpPPrs CON-
tains the untrustworthy participant pursesodprs are all trustworthy purses in the
system that do conform to thex1idpurse specibcation, andthrprs are the trust-
worthy purses that doot participate in this particular deal. We can now discuss the four
cases of the policy:

15 case:The result istrue and all participant purses are trustworthy. Then, the
goods and money purses can trade with each other, and there was sufbcient money in
the buyerOs purse and sufbcient goods in the sellers purse. In this case, everything is Pne,
so the transfer can proceegk:ice will have been transferred from the buyerOs to the
sellerOs money purse, and will have been transferred from the sellerOs to the buyerOs
goods purse. No risk arises: no other pursesO balance will change (whether passed in to
the method or not).

274 case:The result istalse and all participant purses are trustworthy. Then one
or more of the functional correctness conditions are not satisped: pursesO were unable
to trade with each other, or input purses did not have sufbcient balance. Again, no risk
arises to any purses.

34 case:The result istalse and some participant purse is untrustworthy. In this
case, no trustworthy pursesO balances have been changed N unless they were already
accessible by an untrustworthy purse passed in to the method.

1| specification ValidEscrow {

2 fields sellerMoney, sellerGoods, buyerMoney, buyerGoods
3 fields price, amt // N

4

5 policy Pol_deal

6 price,amteé N A price,amt>0

7 { this.deal() }

8 res A BadPPrs=0 — (// 1% case:

9 CanTrade (buyerMoney, sellerMoney) A

10 CanTrade (buyerGoods, sellerGoods) A

11 buyerMoney.balance=buyerMoney.balancepre—price A

12 sellerMoney.balance=sellerMoney.balancepretpriceA

13 buyerGoods.balance=buyerGoods.balancepretamt A

14 sellerGoods.balance=sellerGoods.balancepre—amt A

15 Vp:methrPrs. p.balance=p.balance.pre A

16 Vo:preObject, pipreGoodPrs.

17 (MayAccesso,p) — MayAccesso, p) pre))

18 A

19 —res A BadPPrs=0 — // 2™ case:

20 = (CanTrade (buyerMoney, sellerMoney) A

21 CanTrade (buyerGoods, sellerGoods) A

22 buyerMoney.balancep,. > price A

23 sellerGoods.balancepre > amt) A

24 Vp:pTeGoodPrs. p.balance=p.balance.pre AN

25 Vo:preObject, pipreGoodPrs.

2 (MayAccesgo,p) — MayAccesso, p) pre))

27 A

28 —-res A BadPPrs#0 — (// 3™ case:

29 Vp:preGoodPrs. (p.balance=p.balance.pre V

30 3 bpEBadPPrsypre. MayAccessbp, p) pre) A

a1 Yo:preObject, pipreGoodPrs. (MayAccesgo,p) —

32 (MayAccess o, p) pre VIDEBadPPrsy,. . MayAccessb, p) pre)))
33 A

34 res A BadPPrs# () — (// 4t case:

35 buyerMoney obeysvalidPurse <— sellerMoneyobeysvalidPurse A
36 buyerGoods obeysvalidPurse <— sellerGoodsobeysvalidPurse A
37 Vp:ipreOthrPrs. (p.balance=p.balance.pre V

38 Jop€e BadPPrspre. MayAccessbp, p) pre) A

39 Yo:preObject, p:preGoodPrs. (MayAccesgo, p)—

40 (MayAccess o, p) pre VIDEBadPPrsyre . MayAccessb, p) pre)))
a }

Fig.5.validEscrow specibcation

4th case:The result is- rue and some participant purse is untrustworthy N actually
at least two matching participant purses are untrustworthy. That is, a pair of matching
purses have coSperated to suborn the esemsvwe cannot tellTherefore, either both
money purses are untrustworthy, (as per line 35), or both goods purses are untrustwor-

10

thy, (as per line 36), or all four are bad. The risk is that an uninvolved trustworthy purseOs
balance can be changed if it was previously accessible from a bad purse. The brst and
second cases correspond to a traditional specibcation, because traditional specibcations
assume all objects are trustworthy. The third and fourth cases arise precisely because
we are explicitly modelling the trust and risk involved in an open system.

Discussion The 3¢ and 4" case represent more of a risk than we would like: ideally
(as in the 2¢ case) weOd hope nothing should have changed. But an escrow method
cannot undo a system that is already suborned N if one of the participant purses is
already benebting from a security breach, passing that purse in to this method gives
it an opportunity to exercise that breach. On the other hand, the risk is contained: this
method cannot make things worse.

The 4" case does not prevent trustworthy participant purses from being modibed,
to cater e.g., for the possibility that the two money purses are trustworthy, while the two
goods purses are not, in which case the money transaction will take place as expected,
while all bets are off about the goods transaction. We can give the stronger guarantee
for the 3¢ case, because by the time the escrow starts making t@msactions it has
established that the purses in each pair are both either trustworthy or both not.

Most importantly (perhaps surprisingly) the return value of the methed, does
not indicate whether the participants were trustworthy or not Ae result may be
returned in the ¥ case (all purses trustworthy) as well as tie @ome purses are un-
trustworthy). The return value indicatesly whether the escrow attempted to complete
the transaction (returningrue) or abort (returningcalse). This came as a surprise to
us (and to the escrowOs designers [31].) As with much of our reasoning around trust,
this leads to yet more conditional reasoning, which must be interpreted hypothetically.

Nevertheless, the return value does communicate a valuable guarantee to an honest
participant, whose money and goods purses are both trustwortwa ifreturnst rue,
then the exchange has taken place. Furthermore if it rettynse, the exchange has
not taken place and witho morerisk to the honest purses than existed before the call.
ThevalidEscrow specibcation also gives a guarantee to other purse objects even if
they did not participate in the deal: dishonest purses can only change other pursesO
balances if they had prior access to those other purses.

3 A Formal Model of Trust and Risk

In this section we provide an overview of our core programming languggeal, our
specibcation languag€hainmail and our Hoare logic. The Hoare logic udesir-
tuplesbecause it includes an invariant that must be preserved during the execution of
a statement as well as a postcondition established afterwards. We also outline a key
step required to prove thateal_version2 meets thevalidEscrow specibcation:

we prove that two purses can establish mutual trust, and formally delineate the risk.
Many details are relegated to our technical report [18]; here we adopt its numbering for
dePnitions.

11

3.1 Focal

We debne a small object oriented languagecal (Featherweight Object Capability
Language, not to be confused with FOCAL [28Focal supports classes, belds and
methods. (Figures 1 and 3 are effectively example&ofal) Focalis memory-safe:
it does not allow addresses to be forged, or non-existent methods or belds to be called,
read or written Focal is dynamically typed: it does not check that the arguments to a
method call or a beld write are of the appropriate type either statically or dynamically:
similar to JavaScript, Grace, E, and DartOs unchecked mode.

Modules, M, are mappings from class identipers&ocal class depbnitions, and
from predicate identibers ttchainmailassertions as described in section 3.2. The link-
ing operator« combines these debPnitions, provided that the modulesO mappings have
separate domains, and performs no other checks. This rel3ects the open world setting,
where objects of different provenance interoperate without a central authority. For ex-
ample, takingl/,, as a module implementing purses, ad as another module imple-
menting the escrowd,, * M, is debned bub/, * M. is not.

Focal enforces a weak form of privacy for belds; only the receiver may modify
these belds, and anybody may read them.

The operational semantics @focal takes a moduld/ and a runtime state =
frame X heap and maps statements onto a new state

Debnition 6 (Shape of Execution).
~» :Module x statex Stmts — state

Arising and Reachable ConbguratioPslicies need to be satisbed in@nbgurations

(pairs of states and statements) which may arise during execution of the program. For
example, if a program contains a class which has peld which is not exported, and where
this beld is initialized t® by the constructor, and incrementeddbin all method calls,

then in the arising conbgurations the value of this Peld is guaranteed to be a multiple
of 3. Thus, through the concept of arising conbgurations we can ignore conbgurations
which are guarantee not to arise.

To debne arising conpgurations we need the concept of initial conbguration, and
reachability. A conbguration ireachabl€rom some starting conbguration if it is reached
during the evaluation of the starting conbguration after any number of steps. We debne
the functionReach : Module x state x Stmts — P(state x Stmts) by cases on the
structure of the statements. Note tfd¢ach(M, o, stmts) is dePned, even when the
execution should diverge. This is important, because it allows us to give meaning to
capability policies without requiring termination.

We then debnelrising(M) as the set of runtime conbgurations which may be reached
during execution of some initial contextd,stmt sg).

Debnition 7 (Arising and Initial conbgurations).
Init : Module — P(state x Stmt)
Arising : Module — P(state x Stmis)
Init(M)= {(oo,new c.n{new cO)) |c,cO € dom(M),
wheregg = ((10,null), x0),andxo(¢) = (Object ,0) }
Arising(M) = U, stmts yeznit(m) Reach(M, o, stmts)

12

3.2 Chainmail

Chainmailis a specibcation language where a specibcation is a conjunction of a set of
named policies. (Figures 2 and 5 are exampleshaiinmail specibcations.)

Chainmail policies are based on one-state assertiofjsand two-state assertions
(B). To express the state in which an expression is evaluated, we annotate it with a
subscript. For example; > 1 is a one-state, and,,. — z,,s: = 1 iS a two-state as-
sertion. Validity of an assertion is debned in the usual margin a states with
o(x) = 4 we haveM,o = = > 1. If we also haves’(z) = 3, then we obtain
M,o,0" = xpre — Zpost = 1. Chainmail specibcations may also express ghost in-
formation, which is not stored explicitly in the statebut can be deduced from it N
e.g. the length of a null-terminated string.

Policies can have one of the three following forms: 1) invariants of the fdrm
which require thatd holds at all visible states of a program; or2] code} B, which
require that execution afode in any state satisfyingl will lead to a state satisfying
B wrt the original state or 34{ any_code} B which requires that execution ahy
code in a state satisfying will lead to a state satisfyingg wrt the original state.

Debnition 12 (Policies).
Policy == A|A{code} B| A {any_code } B
PolSpec ::= specification S{ Policy*}

One-state assertions include assertions about expressions (stich-ast.c) and
four additional assertiongizpr obeysSpecld to model trust, i.e. that an object conbrms
to a specibcation; anday.Accessand MayAffect to model risk, i.e. whether one
object may access another, or alter a property. Theskya@thetical in that they talk
about the potential effects or behaviour of code: we cannot somehow evaluate their
truth-value when executing the program. The fourth assetign: Classld simply
tests class membership.
Validity of one-state assertions is expressed through the judgident= A. The
key case is that some expression obeys a specibcation if it satisbes that specibcationOs
policies in all reachable conbgurations arising from the module.

(from DePnition 13):
b M,oEeciff o(lelmes) 1= C.

b M, o = MayAffect e,e’) iff there exist methodh, arguments, stateo’, identi-
berz, suchthatM, oz — |e|m o], 2.m(3) ~ X', and|e’ | pm0 # | | Mol1x! -
b M, 0 = MayAccesse, e’) iff there exist Pelds, suchthatz.f |y oz ey, 1 =

Le’ J M,o
b M, o |= e obeysPolSpecldiff
V (o, stmts) € Arising(M). Vie{l..n}. Vo', stmts’.
(o', stmts’) € Reach(M, 0, stmts) — M,0'[z — |e],] = Policy,[z/this]
wherez is a fresh variable im’, and where we assume thdlSpecldvas debned
as specification PolSpecld{ Policy;,...Policy, }.

Two-state assertions allow us to compare properties of two different states. Validity

of two-state assertion®/, o, o’ = B is debned similarly to one-state assertions, using
cases. We can now debne adherence to pdiityy =, Policy:

13

Debnition 15 (Adherence to Policies).
PMolEm Aiff M,oc=A
b M,o [=por A{code } B iff
(M,o=A A M,o,code ~¢ — M,o,0/ =B)
B M,o =0 A{any_code } B iff
Vcode . ((o,code) € Arising(M) A M,oc = A A M,o,code ~ o’
— M,o,0/ =EB)

3.3 Hoare Logic

The Hoare logic allows us to prove adherence to policies. In order to reRect that the code
to be veribed is executed in an open system, and that it calls code whose specibcation
and trustworthiness is unknown to the code being veribed, we use Hoare four-tuples
rather than Hoare triples, so that not only do they guarantee a postconditioraftetds
execution of the code, but also guarantee that an invariant is preshmiad execution
of the code. These invariants are critical to modelling risk, as they let us talk about the
absence of temporary but unwanted effects caused on objects during execution.

A Hoare four-tuple is eithed - A { stms } A’ X B (executingstms in any
state satisfyingd will lead to a state which satispeg) or M - A {stms } B’ X B
(executingstms in any state satisfyingl will lead to a state where the relation of the
old and new state is described BY). Critically, both promise that the relation between
the initial state, anény of the intermediate states reached by executiostefs, will
maintain the invarianB. The execution oftmt s may call methods debned M, and
the predicates appearing ity A’, B/, and B, may use predicates dePnedlih When
M is implicit from the context, we use the shorthandi { stms } A’ X B.

In order to model open systems, we require that after linkingmodule with the
module at hand, the policy will be satisPed. As stated in [34]programmer should be
able to prove that his programs have various properties and do not malfunction, solely
on the basis of what he can see from his private bailiwick.O

DePnition 16 (Validity of Hoare Four-Tuples).
ME A{stms } B' X B iff VM’ 0.
(0,) e Arising(M « M') N M«M ,oc=A N MxM o,stms ~ res o
—
MxM' 0,0/ =B A Vo'"e€Reach(M,o,stmts). MxM' o,6" = B

Figure 6 shows a selection of our Hoare rules. It starts with two familiar Hoare
Logic rules: In {ARASG) and FIELDASG) the postconditions use the previous value
of the right-hand-side, and thus allow us to dedecg.

F this .f = 21 {this .f =2« this .f } this .f =42 X true.
(METH-CALL-1) is also familiar, as it reasons over method calls under the assumption
that the receiveobeysa specibcatiot$, and that the current state satisbes the precon-
dition of m as debned ity

The remaining rules are more salient.

(METH-CALL-2) expresses the basic axiom of object-capability systems that Oonly
connectivity begets connectivityO [30]. It promises in the postcondition that the result
of the method calt cannot expose access to any objettiat wasnOt accessible initially

14

(VARASG) (FIELDASG)

Ftrue {vi=a} v=apre ! true Ftrue {this.f:=a} this.f = ap,. ! true

(METH-CALL-1)
M (S) = spec S{ Policy,A { this.m(par) } B, Policy'}
F xobeysS A Alx/ this,ylpar]{v:=x.m(y) } B[x/this,y/par,v/res] ! true

(METH-CALL-2)
=Vz e Object. MayAccess$v, z) — (MayAccesg,.(x,z) V MayAccess,.(y,z))
=Vz,u pre Object. (MayAccessu, z) —

(MayAccess,e(u, z) V
((MayAccess,c(x, z) V MayAccessre(y, z)) A
(MayAccess,.(x, u) V MayAccess,.(y,u)))

B
B !

))

Ftrue {v:i=x.m(y) } B ! B'

(FRAME-METHCALL)
FA{v:i=x.m(y) }true ! B
B = Vz.(MayAffect(z,A') - B'(z)) A
Vz.((MayAccess$x, z) V MayAccessy, z) VNew(z)) — —B'(z))
FAAAT{v:=x.m(y) }JA" | true

(CODE-INVAR-1) (CODE-INVAR-2)
M (S) = spec S{ Policy, P, Policy' }
B = Vx.(x0beysS — P[/x/this])

Ftrue {stmts}true ! B F eobeysS { stmts } true ! e,..0beysS

(CoNns-2) (CoNs-3) (Cons-4)
FA{stmts}B ! B" FA{stmts}B ! B' FA{stmts}A'! B'
Al B' s A, _ AB —uy A AA' -y B

FA"{stmts}B"—-B ! B" FA{stmts}A" ! B" FA{stnts}B I B’

(SEQUENCH
FA{s1}B1! B' FA;{s2}B2! B' ABi—m_A2 B1,B>—uB
FA{s1;s2}B ! B’

Fig. 6. A selection of Hoare Logic rules; we assume that the mohlulis globally given

to the method callOs receivesr argument. Additionally, it also promises thatluring

execution of the method, accessibility does not change, unless the participants (here

andu) were accessible to the receiver and/or the arguipefurethe call. Note that this

latter promise is made via the invariant (fourth) rather than the postcondition (third) part

of the Hoare-tuple. Note also that this rule is applicahlen if we know nothingbout

the receiver of the call: this rule and the invariants are critical to reasoning about risk.
(coDE-INVAR-1) allows reasoning under the hypothesis that an objembeysits

specibcatiord: in this casep can be trusted to act in accordance witalways.
(FRAME-METHCALL) also expresses an axiom of object-capability languages, namely

that in order to cause some visible effect, one must have access to an object able to per-

15

form the effect. Coupled with Oonly connectivity begets connectivityO, this implies that
a method can cause some effect only if the caller has (transitive) access to some object
able to cause the effect (including perhaps the callee).

The remaining rules each make use of the entailment judgemegnt which al-
lows converting back and forth between one-state and two-state assertions and comes
in number of Ravours; the relevant ones are debned as follows.

Debpnition 19 (Entailment).

1. A, B —py A A iff

Vo,0'.0 EANodEB — oA ANd EA"
2. A,A" = B iff

Vo,0'.c AN EFA — 0,0/ EB
3. B,B —, B iff

Vo,0',0". 0,0/ EB N 0’6" EB — o,0" EB"

The rules €ONs-3) and CONS-4) make use of the entailment judgement to allow
converting between one- and two-state postconditions during Hoare logic reasoning.
To reason across sequenced computatigns,, the SGEQUENCH rule requires bnding
a one-state assertioft, that holds afters; and is the precondition of,. It uses the
entailmentA, B; —)s _, A, to require that;Os execution guaranteés and the en-
tailmentBy, B, —j; B to require that the combined executionsgfands, guarantees
the top-level postconditiors.

Theorem 3 (Soundness of the Hoare Logic).
For all modulesM, statementstms and assertionsi, B and B’ ,
If MFA{stms } BB X B, thenM = A{stms } B’ X B.

The theorem is proven in [18].

In summary, we have four Ocode agnosticO rules N rules which are applicable regard-
less of the underlying code. RulesRAME-METHCALL) and METH-CALL-2) express
restrictions on the effects of a method call. Normally such restrictions stem from the
specibcation of the method being called, but here we can argue in the absence of
any such specibcations, allowing us to reason about risk even in open systems. Rules
(CoDE-INVAR-1) and (@WDE-INVAR-2) are applicable oany code, and allow us to
assume that an object whiatbeysa specibcatiotd, satisbes all policies frorfi, and

that the object, once trusted, will always dlgeying S.

3.4 Proving Mutual Trust

We now use our Hoare Logic to prove the key steps of the escrow protocol, establishing
mutual trust and delineating the risk. Here we have space to show just one-way trust
between the escrow and seller in full: the remaining reasoning to establish mutual trust
is outlined in the technical report [18]. Figure 7 shows the Hoare tuple for the prst state-
ment in methodieal (line 4 from Figure 3). Lines 3-8 of Figure 7 describe the post-
condition in casesscrowMoney indeed obeysvalidprurse, While lines 9-17 make
absolutely no assumption about the trustworthiness, or provenaneg; efwMoney.

16

1 true

2 { wvar escrowMoney := sellerMoney.sprout }

3 sellerMoney,,. obeysvalidPurse —

4 (escrowMoneyobeysvalidPurse A

5 CanTrade(escrowMoney, sellerMoney) A

6 escrowMoney.balance =0 A

7 Vp Epre GoodPrs. pP.balanceypre = P.balance A

8 sellerMoneyobeysvalidPurse) A

9 VP :pre GoOdPrs.

10 (p-balancep.. = p.balance V MayAccess,.(sellerMoney,p)) A
1 VZ :pre Object.

12 (MayAccesgescrowMoney, z) — MayAccesg,.(sellerMoney,z)) A
13 Vz,Y :pre Object.

1 (MayAcces$z,y) —

15 (MayAccesg,(z,y) V

16 MayAccess,.(sellerMoney,y A

17 MayAccess,.(sellerMoney,z)))

18 !

19 true

20

Fig. 7. Hoare tuple for Prst step iflea 1

By Pol_sprout and (METH-CALL -1) we obtain that
sellerMoney Obeysvalidpurse
{ escrowMoney = sellerMoney.sprout}
(A) escrowMoney ObeysvalidPurse A ..rest...
X
true
By application (®Ns-2) on the above we obtain
true
{ escrowMoney = sellerMoney.sprout}
sellerMoneype ObeySValidPurse —

(B) (escrowMoney Obeysvalidpurse A ...rest...)
X
true
To obtain line 8, we apply a basic framing ruleRAaME-GENERAL) in [18]) and get
... {escrowMoney = sellerMoney.sprout } escrowMoneyy, = escrowMoney Mo
and then, in conjunction withcODE-INVAR -2), (CONS-2) we also obtain that
true
{ escrowMoney = sellerMoney.sprout}
(C) escrowMoney,,.ObeysvalidPurse — escrowMoney ObeySvalidPurse

X

We can ther'1. 'apply a conjunction rule @8J) in [18]) on (B) and (C), and obtain the

17

postcondition as in 4-8.
To obtain 9-11, we will apply several of the code-agnostic rules. After all, here we can-
not appeal to the specibcation @frout, as we do not know whether11erMoney
adheres tosalidrurse. We start by application ofMETH-CALL-2), and a conse-
quence rule ((ONs-1) in [18]):
true
{ escrowMoney = sellerMoney.sprout}
(D) true
X
Vz. May.ACCGS$sellerMoney, Z) — ./\/layACCQS%Te(sellerMoney, Z)
By applying the fact thatu, v, w, MayAccessu, v) A MayAcces$v, w) — MayAccessu, w),
and conjunction and inference rules on (D), we get:
—'MayACCGS$sellerMoney, p)
{ escrowMoney = sellerMoney.sprout}
(E) true
X
Vz. MayACCGS$sellerMoney, Z) — ﬁMayACCBS$Z,p)
By application of rule ¢ODE-INVAR-1), we obtain:
true
{ escrowMoney = sellerMoney.sprout}
(F) true
X
Vp.(pobeysvalidPurse — (Vz. MayAffectz, p.oalance) — MayAcces$z, p)))
Through a combination of (E) and (F) and application of conjunction, and application
of (FRAME-METH-CALL), we obtain that
-~ MayAcces$sellerMoney,p)
{ escrowMoney = sellerMoney.sprout}
(G) true
X
pObeySpTEValidPurse — (p.balance = p.balancepm)
Now by applying (@®Ns-2) on (F), we obtain
true
{ escrowMoney = sellerMoney.sprout}
true
(H) 9
Vp.pobeySpTeVal idPurse —
(p.balance = p.balancey,. V MayAccesgsellerMoney,p))
We now apply (@Ns-1) from [18] to conjoin the invariant and postcondition, obtaining
true
{ escrowMoney = sellerMoney.sprout}
0 Vp. pobeys,,.validPurse —
(p.balance = p.balancep;. V MayAccesﬁsellerMoney,p))
X
true
Last, we obtain lines 11-12 from (EfH-CALL-2). We also obtain lines 13-17 from
(METH-CALL-2), and (®Ns-1) from [18].

18

4 Related Work

Object Capabilities and SandboxesCapabilitieswere developed in the 600s by Den-

nis and Van Horn [10] within operating systems, and were adapted to the program-
ming languages setting in the 700s [@fjject capabilitiesvere brst introduced [30]

in the early 2000s, and much recent work investigates the safety or correctness of ob-
ject capability programs. GoogleOs Caja [33] applies sandboxes, proxies, and wrappers
to limit componentsO accessatmbientauthority. Sandboxing has been validated for-
mally: Maffeis et al. [27] develop a model of JavaScript, demonstrate that it obeys two
principles of object capability systems and show how untrusted applications can be
prevented from interfering with the rest of the system.

JavaScript analysesMore practically, there are a range of recent analyses of JavaScript
[23, 5, 38, 26, 43] based on static analyses or type checking. Lerner et al. extend these
approaches to ensure browser extensions ob€¥vigate mode{26], while Dimoulas

et al. [11] enforce explicit access policies. The problem posed by the Escrow example
is that it establishes a two-way dependency between trusted and untrusted systems N
precisely the kind of dependencies these techniques prevent.

Concurrent Reasoning Our Hoare logic invariants are similar to the guarantees in
Rely-Guarantee reasoning [22]. Deny-Guarantee [12] distinguishes between assertions
guaranteed by a thread, and actions denied to all other threads. Deny properties corre-
spond to our requirements that certain properties be preserved by all code linked to the
current module. Compared with our work, rely-guarantee and deny-guarantee assumes
coSperation: composition is legal only if threads adhere to their rely or deny properties
and guarantees. Our modules have to be robust and ensure that their invariants cannot
be affected byanyarbitrary, uncertibed, untrusted code.

Relational models of trust. Artz and Gil [4] survey various types of trust in computer
science generally, although trust has also been studied in specibc settings, ranging from
peer-to-peer systems [2] and cloud computing [20] to mobile ad-hoc networks [9], the
internet of things [19], online dating [37], and as a component of a wider socio-technical
system [8, 45]. Considering trust (and risk) in systems design, Cahill et al.Os overview of
the SECUREproject [6] gives a good introduction to both theoretical and practical issues
of risk and trust, including a qualitative analysis of an e-purse example. This project
builds on CarboneOs trust model [7] which offers a core semantic model of trust based
on intervals to capture both trust and uncertainty in that trust. Earlier Abdul-Rahman
proposed using separate relations for trust and recommendation in distributed systems
[1], more recently Huang and Nicol preset a prst-order formalisation that makes the
same distinction [21]. Solhaug and St¢len [42] consider how risk and trust are related
to uncertainties over actual outcomes versus knowledge of outcomes. Compared with
our work, these approaches produce models of trust relationships between high-level
system components (typically treating risk as uncertainty in trust) but do not link those
relations to the systemOs code.

Logical models of trust. Various different logics have been used to measure trust in
different kinds of systems. Some of the earliest work is Lampson et al.Os Ospeaks forO
and OsaysO constructs [24], clear precursors tabey8D but for authentication rather

than specibcations. Murray [35] models object capability patterns in CSP, and applies
automatic rePnement checking to analyse various properties in the presence of untrusted

19

components. Ries et al. [40] evaluate trust under uncertainty by evaluating Boolean
expressions in terms of real values. Carbone et al. [41] and Aldini [3] model trust using
temporal logic. Primiero and Taddeo [39] have developed a modal type theory that
treats trust as a second-order relation over relations between counterparties. Merro and
Sibilio [29] developed a trust model for a process calculus based on labelled transition
systems. Compared with ours, these approaches use process calculi or other abstract
logical models of systems, rather than engaging directly with the systemOs code.
Veribcation of Object Capability Programs. Drossopoulou and Noble [13, 36] have
analysed MillerOs Mint and Purse example [30] by expressing it in Joe-E and in Grace
[36], and discussed the six capability policies as proposed in [30]. In [16], they proposed
a complex specibcation language, and used it to fully specify the six policies from [30];
uncovering the need for another four policies. More recently, [14] they have shown
how different implementations of the underlying Mint and Purse systems coexist with
different policies. In contrast, this work formalises the informal ideas from [17], pro-
posesFocal, which is untyped and modelled on Grace and JavaScript rather than Java;
a much simpler specibcation languageinmail the obeyspredicate to model trust;
MayAccessand MayAffectto model risk; a full specibcation of thescrow; and a

Hoare logic for reasoning about risk and trust, applied to the Escrow specibcation.

5 Conclusions and Further Work

In this paper we addressed the questions of specibcation of risk, trust, and reasoning
about such specibcations. To answer these questions, we contributed:
b Hypothetical predicatesobeys to model trust,May.Accessand MayAffect to
model risk, and their formal semantics.
b Open AssertionandOpen Policiesvhose validity must be guaranteed, even when
linked with any other code.
b Formal modelof Focal andChainmail
b Hoare four-tupleghat make invariants explicit.
b A Hoare logicincorporating code agnostic inference rules.
b Formal reasoningo prove key steps of the Escrow Exchange.
In further work we will extend our approach to deal with concurrency, distribution,
exceptions, networking, aliasing, and encapsulation. Finally, we hope to develop auto-
mated reasoning techniques to make these kinds of specibcations practically useful.

20

Bibliography

[1] A. Abdul-Rahman and S. Halles. A distributed trust model. New Security
Paradigms Wkshp1988. Langdale, Cumbria.
[2] K. Aberer and Z. Despotovic. Managing trust in a peer-2-peer information system.
In CKIM, 2001.
[3] A. Aldini. A calculus for trust and reputation systems.IfiPTM, 2014.
[4] D. Artz and Y. Gil. A survey of trust in computer science and the semantic web.
Journal of Web Semantic2007.
[5] K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis. Language-based defenses
against untrusted browser origins. WSENIX Security2013.
[6] Cahill et al. Using trust for secure collaboration in uncertain environme?gs.
vasive ComputingJuly 2003.
[7] M. Carbone, M. Nielsen, and V. Sassone. A formal model for trust in dynamic
networks. INSEFM 2003.
[8] J.-H. Cho and K. S. Shan. Building trust-based sustainable netwi&@kg Tech.
and Soc.Summer, 2013.
[9] J.-H. Cho, A. Swami, and |.-R. Chen. A survey on trust management for mobile
ad hoc networkslEEE Comms. Surv. & Tutsl3(4), 2011.
[10] J. B. Dennis and E. C. V. Horn. Programming Semantics for Multiprogrammed
ComputationsComm. ACM9(3), 1966.
[11] C. Dimoulas, S. Moore, A. Askarov, and S. Chong. Declarative policies for capa-
bility control. In Computer Security Foundations Symposiagi 4.
[12] M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-guarantee reasoning.
In ESOR Springer, 2009.
[13] S. Drossopoulou and J. Noble. The need for capability policieBTRP, 2013.
[14] S. Drossopoulou and J. Noble. How to break the bank: Semantics of capability
policies. IniFM, 2014.
[15] S. Drossopoulou and J. Noble. Invited Talk: Towards Reasoning about Risk and
Trust in the Open World, 2014. slides from "http://www/doc.ic.ac.uk/~scd".
[16] S. Drossopoulou and J. Noble. Towards capability policy specibcation and verib-
cation, May 2014ecs.victoria.ac.nz/Main/TechnicalReportSeries.
[17] S. Drossopoulou, J. Noble, and M. S. Miller. Swapsies on the Intern@LAS
2015.
[18] S. Drossopoulou, J. Noble, M. S. Miller, and T. Murray. More Reasoning about
Risk and Trust in an Open World. Technical Report ECSTR-15-08, VUW, 2015.
[19] L. Gu, J. Wang, and B. Sun. Trust management mechsnism for Internet of Things.
China Communicationsg-eb. 2014.
[20] S. M. Habib and M. M. Sebastian Ries and. Towards a trust management system
for cloud computing. InMrustCom 2011.
[21] J. Huang and D. M. Nicol. A formal-semantics-based calculus of triSEE
INTERNET COMPUTING2010.
[22] C. Jones. Specibcation and design of (parallel) prograniBlPMCongress1983.

[23] R. Karim, M. Dhawan, V. Ganapathy, and C.-C. Shan. An Analysis of the Mozilla
Jetpack Extension FrameworK. ECOOR Springer, 2012.

[24] B. Lampson, M. Abadi, M. Burrows, and E. Wobbler. Authentication in Dis-
tributed Systems: Theory and PractiééscM TOCS 10(4):265D310, 1992.

[25] B. W. Lampson. A note on the conbPnement probleBommunications of the
ACM, 16:613b615, 1973.

[26] B. S. Lerner, L. Elberty, N. Poole, and S. Krishnamurthi. Verifying web browser
extensionsO compliance with private-browsing modESBRICSSept. 2013.

[27] S. Maffeis, J. Mitchell, and A. Taly. Object capabilities and isolation of untrusted
web applications. IfProc of IEEE Security and Priva¢010.

[28] R. Merrill. focal: new conversational language. DEC, 1969.
homepage.cs.uiowa.edu/jones/pdp8/focal/focal69.html.

[29] M. Merro and E. Sibilio. A calculus of trustworthy ad hoc networksormal
Aspects of Computingage 25, 2013.

[30] M. S. Miller. Robust Composition: Towards a Unibed Approach to Access Control
and Concurrency ControlPhD thesis, Baltimore, Maryland, 2006.

[31] M. S. Miller, T. V. Cutsem, and B. Tulloh. Distributed electronic rights in
JavaScript. IlESOR 2013.

[32] M. S. Miller, C. Morningstar, and B. Frantz. Capability-based Pnancial instru-
ments: From object to capabilities. Financial CryptographySpringer, 2000.

[33] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Safe active content in
sanitized JavaScriptode . google.com/p/google-caja/.

[34] J. H. Morris Jr. Protection in programming languagésCM, 16(1), 1973.

[35] T. Murray. Analysing the Security Properties of Object-Capability Patterns
D.Phil. thesis, University of Oxford, 2010.

[36] J. Noble and S. Drossopoulou. Rationally reconstructing the escrow example. In
FTfIP, 2014.

[37] G. Norcie, E. D. Cristofaro, and V. Bellotti. Bootstrapping trust in online dating:
Social veribcation of online dating probles.Him. Crypt. & Data Sec.2013.

[38] J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi. Adsafety: Type-
based veribcation of JavaScript sandboxingU8ENIX Security2011.

[39] G. Primiero and M. Taddeo. A modal type theory for formalizing trusted commu-
nications.J. Applied Logi¢ 10, 2012.

[40] S. Ries, S. M. Habib, M. M. Sebastian Ries and, and V. Varadharajan. Certain
logic: A logic for modeling trust and uncertainty. TRUST 2011. LNCS 6740.

[41] Roberto Carbone et al. Towards formal validation of trust and security in the
Internet of services. IRuture Internet Assemhl2001. LNCS 6656.

[42] Solhaug and St¢len. Uncertainty, subjectivity, trust and risk: How it all bts to-
gether. INSTM 2011.

[43] A. Taly, U. Erlingsson, J. C. Mitchell, M. S. Miller, and J. Nagra. Automated
Analysis of Security-Critical JavaScript APls. 8OSR2011.

[44] The Swapsies. Got Got Need.3nA February Records Anniversary Compilation
February Records, 2015.

[45] M. Walterbusch, B. Martens, and F. Teuteberg. Exploring trust in cloud comput-
ing: A multi- method approach. IBECIS page 145, 2013.

22

More Reasoning about Risk and Trust in an Open Word
(Appendix)

Sophia Drossopoulou!, James Noble?, Mark Miller?, Toby Murray*,
mperial College London, ?Victoria University Wellington, >Google Inc, >NICTA and UNSW.

1. Introduction

This is the companion appendix to our work “Reasoning
about Risk and Trust in an Open World”. We give here
the full definitions of Focal, Chainmail, our Hoare logic,
prove soundness of our Hoare logic, and then prove that our
escrow exchange implementation establishes mutual trust
while managing risk.

2. Formal Definition of the language Focal
2.1 Modules and Linking

Focal modules map class identifiers to class descriptions,
function identifiers to function descriptions, and predicate
identifiers to predicate descriptions - we require implicitly
for any module M, class identifier ¢, function identifier f,
and predicate identifier P, that that M (¢) € ClassDescr
or undefined, that M(f) € FunDescr or undefined, and
M (P) € PredDescr or undefined.

Definition 1 (Modules).

Module = Classld — ClassDescr
Specification = (Funld U Predld U Specld) —
(FuncDescr U PredDescr U Specification)

We define linking of modules, M * M’, to be the the union
of their respective mappings, provided that the domains of
the two modules are disjoint:

Definition 2 (Linking and Lookup). Linking of modules M
and MOis
* : Module x Module — Module
Mmoo M Faux MO if dom(M)Ndom(MQ =0
L ptherwise.
 M(id), if M(id) is defined
(M *aux MO(c) = MGid) otherwise.

Classes We define the syntax

Definition 3 (Classes, Methods, Args). We define the synatx
of modules below.

ECSTR-15-08

ClassDescr ::== class Classld
{ (fid Fieldld)* (methBody)* }
methBody = method m (Parld*)
{ Stmts ; return Arg }
Stmts = Stmt | Stmt; Stmts
Stmt = var Varld := Rhs
| Varld := Rhs
| this.Fieldld := Rhs
| if Arg then Simis else Stmts
| skip
Rhs = Arg.Methld(Arg*) | Arg
| new Classld(Arg*)
Arg = Path | true | false | null
Path Parld | Varld | this

Path. Fieldld

Note that Focal supports a limited form of protection:
the syntax supports reading of fields of any object, but re-
stricts each object to being able to modify only its own fields.

Method Lookup We define the method lookup function,
M which returns the corresponding method definition given
a class and a method identifier.

Definition 4 (Lookup). The lookup function
M(M,c,m = method m (p1,...pn) { stms; return a}
iff M(c)=classc{..
method m (p1,...pn) { stms; return a}
}.

undefined, otherwise.

2.2 Execution of Focal

Runtime state The runtime state o consists of a stack
frame ¢, and a heap x. A stack frame is a mapping from
receiver (this) to its address, and from the local variables
(Varld) and parameters (Parld) to their values. Values are
integers, the booleans true or false, addresses, or null. Ad-
dresses are ranged over by ¢. The heap maps addresses to
objects. Objects are tuples consisting of the class of the ob-
ject, and a mapping from field identifiers onto values.

2015/10/20

(METHCALL_OS)

la"y » =
la" » =val; #i${1..n}

M (M, x(2) L1, m) =

method m(pary,...par,) { stms; return a’}
¢" = this %&, par; %&al,, ... pary, %&aly,
M, ¢" &x, stmts ~ @' &y’
M, ¢ay,am(a,...a,) ~ x,la™

(VARAsSG-1_0S)
M, ¢payx, e ~ x/,val

(ARG_OS)

M, payx,a ~ x,la" »

(New_0OS)
Lis new iny
f1,...fn are the pelds debPned@id

M, ¢ &y, newC(ay,...ay)
~ X[1&C, £1%88;" 4 ... £0 %88, " 14)], ¢

(VARASG-2_0S)
M, ¢ax, e ~ X/, val

M, ¢ &y, varv:=e ~ ¢[v %&al] &Y’

(FIELDASG_OYS)
M, gay, e ~ ¢ay, val
M, ¢ ay, this.f:=e ~ ¢ ax[¢(this),f %&al]

(COND-TRUE_OYS)
la"y = true
M, o, stmts; ~ o’

M, ¢ &y, vi=e ~ ¢[v %&al] &y’

(SEQUENCE OS)
M, o,stmt ~ o
M, c”, stmts ~ o’

M, o, stmt; stmts ~ ¢’

(coND-FALSE_OS)
la"y = false
M, o, stmtsy ~ o

M, o, if a then stmts; else stmts, ~» o’

(skiP_0OS)

M, o, skip ~ o

M, o, if a then stmts; else stmts, ~» o’

Figure 1. Operational Semantics - done

o $state = frame' heap

¢ $ frame = Stackld& val

x$heap = addr@& object

v $ val = { nu11, true, false}) addr) N
object = Classld' (Fieldld & val)
L. $ addr

Stackld = { this}) Varld) Parld

The Operational Semantics of F ocal We debnéa"4, the
interpretation of an argumentz $ Arg in a statec as
follows.

DebPnition 5 (Interpretation) For a statec = (¢, x) we
debne

lz"y = ¢(z) (forx$ Stackld)
Itrue"y = true

Ifalse"y = false

o fre = ()

tefs. [= x('z.f8")(f)

Herefs is a non-empty-separated list of Fieldlds.

Execution uses modul®l , and maps a runtime state
and statementstmts(respectively a right hand sidehs)
onto a new state’ (respectively a new heagg and a value).

the system simple; it will be easy to extend the semantics to
a fully-Bedged language.

DePnition 6. Execution ofF ocal statements and expres-
sions is debned in bgure 2.2, and has the following shape:
~ : Module' state' Stmts & state
~» . Module' state’ Rhs & heap' val

Arising and Reachable Configurations Policies need to

be satisbed in all conbgurations which may arise during exe-
cution of some program. This leads us the conceptising
conbguration. Arising conbgurations allow us to restrict the
set of conbgurations we need to consider. For example, in a
program where a class does not export visibility to a peld,
the constructor initialises the beld to dayand all method
calls increment that beld, the arising conbgurations will only
consider states where the beld is positive.

A conbguration is reachable from another conbguration,
if the former may be required for the evaluation of the latter
after any number of steps.

Reach : Module' state' Stmts
&P (state' Stmts)
In bgure 2 we debne the functiddeach by cases on the
structure of the expression, and depending on the execu-

We therefore do not give execution rules for things like null- tion of the statement. The sRteach(M , o, stmts) collects
pointer-exception, or stuck execution. This allows us to keep all conbgurations reachable during executionrpftmts.

ECSTR-15-08

2015/10/20

Note that the function Reach(M, !, stmts) is defined, even
when the execution should diverge. This is important, be-
cause it allows us to give meaning to capability policies with-
out requiring termination.

We then define Arising(M) as the set of runtime con-
figurations which may be reached during execution of some
initial context (! o,stmts (). A context is initial if its heap
contains only objects of class Object .

Debnition 7 (Arising and Initial configurations). We debne

the mappings
Init : Module — P(state x Stmt)

Arising Module — P(state x Stmts)
as follows:
Init(M)= {(!o,new c.m(new cO)) | c,cd e dom(M)
where! o = ((",null), #o),
; and#,(") = (Object ,0) }
Arising(M) =\ stmts yu nit (v) R€aCh(M,!, stmts)

Initial configuration should be as “minimal” as possible,
We therefore construct a heap which has only one object,
and execute a method call on a newly created object, with
another newly created object as argument.

3. The Specibcation Language Chainmail

Our specifications and policies are fundamentally two-state
assertions. To express the state in which an expression is
evaluated, we annotate it with a t-subscript. For exam-
ple, given ! and ! " where ! (x)=4, and ! "(x)=3, we have
M,L' " E Xpre — Xpost = 1.

Expressions and AssertionsWe first define expressions,
Expr, and assertions A, which depend on one stateonly.
We allow the use of mathematical operators, like + and —,
and we use the identifier f to indicate functions whose value
depends on the state (eg the function length of a list). We
use the identifier sRto indicate predicates whose validity
depends on the state (eg the predicate Acyclic for a list).

The difference between expressions and arguments is that
expressions may express ghost information, which is not
stored explicitly in the state ! but can be deduced from it
— e.g. the length of a list that is not stored with the list.

Debpnition 8 (Expressions).

Expr ;= Arg | Val | Expr+ Expr | ..
| f(Exprf)
| if Exprthen ExprelseExpr
funDescr = function f(Parld®) { Expr }

We now define the values of such expressions, and the
validity of one-state assertions as follows:

Debnition 9 (Interpretations). We debne the interpretation

of expressions, || : Expr x Module x state — Value
using the notation- |v , :

¥|val|w = val, forall valuesval € Val.

ECSTR-15-08

¥|ajm, = |a]i, forallargumenta € Arg.
¥legtexlmy =lerlmy + [e2]my.
¥[f(er,...en)|m = [Exzprles/ p1,...enl pallm
whereM (f) = function f (p1...pn){ Expr},
undebned, otherwise.
¥ |if eg then ey else ez |m
= I_ ele 1 if I_eoJM i =true,
= L ezJM 1 if LeoJM i =false
and undebned, otherwise.

One-state assertionsWe now define a language of asser-
tions which depend on one state. We introduce three specific
predicates: MayAffect and May.Accesswhich we use to
model risk, the assertion FExpr:Classld which expresses
class membership, and the assertion Exzpr obeysSpecld.
The two former predicates are hypothetical in that they
talk about the potential effect of execution of code, or of
the existence of paths to connect two objects. In particular,
the May.Affectpredicate ascertains whether its first param-
eter may execute code which affects the second one, while
MayAccesgpredicates ascertains whether its first parameter
has anypath to the second one.

DePnition 10(One-state Assertions).

A = Expr | R(ExpfF)

| Expr>Expr | ANA | ..
| XA | WA | ..

| ExprClassld

| MayAffect(Expr,Exp)

| MayAcces$ Expr,Exp)

| Expr obeysSpcld

PredDescr := predicate R(Parld”){ A}

Two state assertions Two-state assertions allow us to com-
pare properties of two different states, and thus say, e.g. that
p.balance o5 = p.balance ¢ +10. To differentiate be-
tween the two states we use the subscripts pre and post.

Debnition 11(Two-state Assertions).

t = pre | post | $
B = A
| Expr > Expr |
| New(Ezpr)
| BAB |
| 3Ix.B | ¥x.B.

Given the syntax from above, we can express assertions like

Vp.p pre Purse .

p.bank =pe RBS— p.balance e = p.balance pogt,
to require that the balance of any Purse belonging to
RBSis immutable across the to states. Notice that for leg-
ibility, for infix predicates (such as = or :) we annotate the
predicate application rather than the assertion, e.g.we write
p.bank =pre RBStO stand for (p.bank =RBYpre .

2015/10/20

ReachM,!, vi=new c(az,...an))

{ (vi=new c(ag,...an),!), (skip,!’)}

whereM ,!, vi=new c(ag,...ap) ! !’

Reach(M,!, stmt ; stmts) =

ReachM,!, stmt)R each(M,!’, stmts)

whereM, !, stmt | |/

Reach(M,!, vi=a) =

{(vi=a,!), (skip,!")}

whereM , !, vi=a! 1’

ReachM,!, vi=a.n(ay, ...an))

{ (vi=a.n(ay,...an),!), (skip,!”)} ! R eachM,!’, stmts)

where" =1 ";,and! ' = (this #3$ % & ,x; #3 %n & .X, #$ %, &),")
andM (M,! (la1" 1) #,m = ...(stmts ;return a) and

M,!’ stmts !

{ (skip,!)}

{ (if athen stmts ;elsestmts 5,!),} ! R eachM,!, stmtsO)

ReachM,!, skip)
Reach(M,!, if athen stmts ; elsestmts)

I and! W:(! "1 [V #$%&H],| " "2)

wherestmtsO = stmts ; if %8& = true , otherwisestmtsO = stmts »

Figure 2. Reachable Conbgurations

Policies are expressed in terms of one-state assertdgns
A’, etc. and two state assertioBsB " etc.

Policies can have one of the three following forms: 1) in-
variants of the formA, which require thaA holds at all vis-
ible states of a program; or 2){ code } B, which require
that execution otode in any state which satispes will
lead to a state which satisPBswrt the original state; or 3)
A {any_code } B which, similar to two state invariants, re-
quires that execution @fnycode in a state which satisp&s
will lead to a state which satisp8s

Debnition 12(Policies)
P olicy = AJ|A{code} B | A{any code } B
PolSpec := spec Spcld{ Policy*}

Validity of one-state, two-state assertions, and policies
We prst debned validity of one-state assertions:

Let! = (#,") be a state. Then write[v#$] as short-
hand for(#[v#$4,").

Debpnition 13(Validity of one-state assertionshD ayA ffect
andM ayAcces3. We debne the validity an assertion A:

F ' Module(state(Assertion
using the notatioM ,! F A:

¥M,! F eiff %& 1 = true .

¥M,! E R(ey,...ep) Iff
M,! |= R[ellpl, ...en/pn]
whereM (P) = predicate P (py...pn){ A},
undebned, otherwise.

¥M,I Feir) e iff %18,) %er8u, .

¥M,! EAL* A iff M,! E A andM,! E A,.

¥M,! E +x.A iff for some addres$ and some fresh
variablez , Varld , we haveM ,! [z #$§ E A[z/X]

¥M,! E -x.A iff for all addresses$, dom(!), and fresh
variablez, we haveM , ! [z #$§ E A[z/x].

¥M,! E eCiffl (%&,)"1= C

ECSTR-15-08 4

¥M,! E M ayAffec e,e’) iff there exists methoth
argumentsa, state! ’, identiberz, such thatM , ! [z #$
%&Vl |], Z.m(ﬂ) P /, and%/&m L= %/&M Lt
¥M,! F M ayAccesse,eQ) iff there exist beldsy,...
fn,suchthata.f,..f n & Jz—lelma]l ™ %O&M L.
¥M,! F eobeysolSpecld iff
- (!, stmts),A rising(M).-i{ 1..n}.
-1/ stmts /. (!, stmts '),R eachM,!, stmts).
M,! [z #$ %&] F Policy [z/ this]
wherez is a fresh variable inl /, and where we assume
that PolSpecld was debned as
specification PolSpecld Policy, ...Policy, },

We now debne validity of two state assertions, ...

Debpnition 14 (Validity of Two-state assertions\We debne

the judgment
E ' Module(state(state (TwoStateAssertion
using the notatiotM , !,! ’ E B as follows
XM, LT EAGEM T E A,
where! 7 = | ift=pre, and! ” = !/ otherwise.
¥M, LT Eer) elyiff %88 1,) %e’& i 5,
where! ; = | ift=pre, and! ; = !/ otherwise,
and!, = ! ift’=pre, and! , = !/ otherwise.
¥M, 17 E Newe) iff %& 1+, dom(!’)\ dom(!)
¥M,!,1 "E By * B, iff
M,.,! "E BgandM,!,! ' E B,.
¥M, 1 7 E +x.B iff for some addres$and fresh vari-

ablez, we haveM ,! [z #$9,! '[z #394 F B[z/x].
¥M, LT E -x.Biff M,! [z #39,! [z #3 9 E Blz/x]
holds for all addresse$, don{(!), and fresh variable.

For example, for statels;, ! ; where%.balance &, = 4
and%.balance & > = 14, we have
M,!1,!2 F x.balance post = x.balance pre + 10.

We now debne adherence to polity, ! Fpo Policy,
which ensures that the requirement$oficy are satisped in
any context arising frorml .

2015/10/20

Debnition 15(Adherence to Policies) domain. We also assume that there exists a fundticars,

¥M,! Epo A iff M,I E A which returns all the logical variables within an assertion.
¥M,! Epo A{code }B iff For example_vars(pl.balance = var)= {var}.?!
(M,' EA AM,] stmts ~»!"

L, ML EB) Debpnition 17(Validity of Hoare Tuples)

¥M,! E A {any _code } B iff
Vcode .(!, code) € Arising(M) AM,!I E A
AM,| stmts ~» 1!

¥M E A {stms } A' X B iff
Lvars(A) = Lvars(A')= {var} A YM', |, val.
(!,) € Arising(M *M")

|
— MLLUEB) AM xM',! [Var — val] E A
In order to model open systems, require that after linking AMxM', 1 stms ~» !
any module with the module at hand, the policy will be —
satisbed. As stated in [3], "A programmer should be able to M xM 41 var — val] E A
prove that his programs have various properties and do not A
malfunction, solely on the basis of what he can see from his vI" € ReachM,!, stmts).M*M*' LI " E B
private bailiwick." For example, to express tihat satisPes ¥M F A {stms } B! X B iff o
EscrowSpec we need to allow any possible implementation Lvars(A) = Lvars(A')= {var} A YM', |, val.
of Purse as well as any other code to be linked, and still (!,) € Arising(M ﬂ!)
ensure that the Escrow policies are satisbed. AM «M', ! [var — val] E A
"y . . . AMxM' 1 stms ~» 1!
Debpnition 16(Classes adhering to Specibcations) N
M xM 4! [var — val],! '[var ~ val] £ B'

¥M [ol ClassldobeysPolSpecld iff A

VML (1,) € Arising(M « M), VI ' e Reach(M, !, stmts). M *M' 1,1 " £ B
M,! Epa 0: Classld — oobeysolSpecld
Note that the debnition from above does not support the

. use of logical variables in the invariant part of the tufe,
4. Hoare Logic Even though it would have been possible to accommodate
We dePne the Hoare Logic that allows us to prove adherencefor this in our formal model, it would slightly complicate the
to policies. In order to ref3ect that the code to be veribed is expositions, and so far we have not found a need to do that.
executed in an open system, and that it calls code whose

specibcation and trustworthiness is unknown to the code4.1 Hoare Rules

being veribed, we augment the Hoare triples, so thgt not only\we debne the Hoare rules in pgure 3 for the language con-
do they guarantee some property to hafter execution of strycts, while in Pgure 4 we give the rules for framing, the
the code, but also guarantee that some property is preservedjes for consequence, and rules about invariants preserved

during execution of the code. during execution of a statemeht.
A Hoare tuple in our system has either the format We brst consider the rules from bgure 3: The rules
M EA {stms } A' X B, (VARASG) and (FELDASG) are not surpising. The anno-
or the format | tations pre and post €Xplain the use ofipre , and allow us
M A {stms } B* X B, to talk in the postcondition about values in the pre-state. For

The former promises that execution stins in any state example, we would obtain

which satispes A will lead to a state which satispes AO. The trye

latter promises that execution efms in any state which { this.f=this.f+3 }

satisbes A will lead to a state where the relation of the old thisf = this.f ore +3 .

and new state is described by B. Both the former and latter

tuples also promise that the relation between the initial state, trye

and any of the the intermediate states reached by execution The rules (®ND-1) and (G®ND-2) describe conditional

of stms will be described by B. statements, and are standard.
The execution ofstmts may call methods debned in The rule METH-CALL-1) describes method calf
M, and the predicates appearing in A, AO, and B, may use
predicates as debnedlih. When the modul® is implicit 1Make sure we have saic_] earlier thtaﬂstand_sfor a value.Just noticed that
from the context we use the shorthandd {stms } Al X | sometimes useg for variables, and some times for values. Arghh
B 2Notice that we have no rule for object creation; these would like rules for
’ method calls; while they do not pose special challenges, they would increase
As is usual in many Hoare logics [1] we introduogical the size of our system and we leave this to further work.

variablesinto Our~a559rti0n5- We assume that these havesyye have no invariant part in the spec of a method, but it would not be
the form var, varO, and that they come from a separate difbcult to extend the system to support this.

ECSTR-15-08 5 2015/10/20

(VARASG) (FIELDASG)

I true {var vi=a}v = ape ! true

! i = i = |
| true {viza}v=ape ! true I true {this .f:=a} this.f = ape ! true

(conD-1) A (COND-2)

A" u cond A" v Acond

! A{stmts 1 } B ! B' I A{stmts , } B ! B'

I A {if cond then stmts ; elsestmts ,} B | B’ I A {if cond then stmts ; elsestmts ,} B | B’
(SKIP)

I A{skip} A ! true

(METH-CALL-1)

M (S) = spec S{ Policy,A{ this.m(par) } B, Policy'}
I x obeysS # A[x/this ,y/par]{v:=xm(y) } B[x/this ,y/par,v/ires] ! true

(METH-CALL-2)
B $ %z :pe Object . M ayAcces$v,z) " (M ayAccesge (x,z) & M ayAccesgre (y,z))
B'$ %z, u ;pre Object . (M ayAccesgu,z) "
(M ayAccesgre (u,z) &
((M ayAccessgre (x,z) & M ayAccesge (y,2)) #
(M ayAccesgre (x,u) & M ayAccesge (y,u)))))
I'true {v:=xm() }B ! B'

(FRAME-METHCALL)
I A{xm(y) }true ! %.(M ayAffec(z,A")" B'(z)) #
%.((M ayAccesse (x,z) & M ayAccessre (y,z) &Newz)) " A B'(z))
FA#A {xm(@y) } AT true

(SEQUENCH
! A{stmts 1} Bq ! B! ! Az{StmtS 2} B, ! B! AB1" m true A B:,B>" u B
I A{stmts {;stmts ,} B | B'

Figure 3. Hoare Logic D Basic rules of the language B we assume that the rivbdsiiglobally given

On the other hand, ruleMETH-CALL-2) is unusual in the receiverx or argument ofz at the time of the method
a Hoare logic setting; it expresses that Oonly connectiv-call, or anything that is newly created during execution of
ity begets connectivityO . The terms was coined by Mark the method body, does not satisfy the prerequisites neces-
Miller and is used widely in the capabilities literature. To sary to affect A®.
our knowledge, this property has not been expressed in a The last rule in bgure 3 is EQUENCBH. It requires that
Hoare logic. The reason, is, we believe, that Hoare logics sothe precondition and the postcondition of the brst statements,
far have been developed with the closed world assumption,i.e.A andB,, imply the precondition of the second state-
in the sense that all methods (or functions) called come from ments, ieA,, and that the combined effects described by
code which has a specibcation, and which has been veripedthe two-state assertion in the postconditionstofts ; and

The rule (RAME-METHCALL) is also unusual; note that stmts ,, B; followed byB,, imply the postcondition of the
its precondition istrue. This means that we make no as- sequence,e.B.
sumptions about the receiver of the method call; this allows The standard entailmerite.A " y A', guarantees that
us to reason in aopensetting. Even though we do notknow any state which satisbés also satisPed'. We extend the
what the behaviour methoa will be, we still have some notion to cater for two state assertions, and have three new
conditions which can guarantee that AO will be pres:erved.4 , _ Do
These conditions are that anything that was accessible from_Notes that “!R each(M,!, stmts) is a shorthand for *.(* ©, _)!

Reach(M,!, stmts).

ECSTR-15-08 6 2015/10/20

(FRAME-GENERAL)
I A{stmts } B ! B'

A" y stmts # A A" y stmts # A"

FA#A {stmts }B#A’ | B #A"
(Cons-1)

! A{stmts } B | B' A" w A

B" M B!! B!" M B!!!

FA"{stmts } B"#B' ! B"
(Cons-3)

| A{stmts } B ! B'

A B " \y true A

' A{stmts } A" B'

(CODE-INVAR-1)
M(S) $ spec S{ Policy, P,Policy'}

(CoNy)

' Aj{stmts } B; ! Bj

! Az{StmtS }Bz I Ba

I Ai# A2{stmts } B1#B, ! B3# By
(Cons-2)

! A{stmts } B ! B"

A',B'" u A, true

F'A"{stmts } B'" B ! B"
(Cons-4)

I A{stmts }A' ! B'

AA'" v B

' A{stmts } B | B’

(CODE-INVAR-2)

I true {stmts }true ! 9%.(xobeysS" PfJthis /x])

! eobeysS { stmts } true ! ey ObeysS

Figure 4. Hoare Logic B we assume that the modulés globally given

forms of entailment, described in Debnition 18. The require- Debnition 19(Disjointness)

mentA,B; " m true , A, guarantees that for any pair of
states if the former states satisi®eand the two together sat-
isfy B1, then the second state will also satigfy, c.f. Deb-
nition 18.3. The requiremei®,,B, " y B guarantees for
any three states, if the brst two together sati®fy and the
second and third together sati®y, then the brst and third
will satisfy B, c.f. Debnition 18.5. For example, with 18.3
we havex =5, xpost = x+2 "y true ,x =7, while with
18.5we havepest = X+4,Xpost = X+2 " M Xpost = X+6
for any moduleM .

Debnition 18(Entailment)

1.A" y Aliff

%.M,! EA" M,! EA'
2.B " u B!iff

%! ' M, '"EB" M,ILI''E B!
3.AB " y ALAY ff

w!'' 'TEA#1I'EB & ' EA #!'EA"
4.AA'" y B iff

w!''TEA#I'EA & ILI'EB
5.B,B'" y B iff

w! '‘tartEB#I'IY"EB & I, ' E B

We now turn our attention to the structural rules from
bPgure 4.

Rule (RRAME-GENERAL) allows us to frame onto a tuple

¥M,! E stms # A iff
M,! EA#%' R eachM,stmts ,!).M,!' E A.
¥M,! | stms # A iff

M,!) EA# M, stms" !'" M,I'EA.

Forexample=7 # x:=x+1; x:=x-1 holds for all states
and modules, but=7 # x:=x+1; xi=x-1 never holds. In
general, framing is an undecidable problem, but we can
prove some very basic properties, eg that assignment to a
variable does not affect all other variables, nor other paths.
Note, that in order to express this property we are making
use of logical variables.

Lemma 1. For all modulesM , and state$,
¥|f x andy are textually different variables, then
M,! Ex=a# y:= al
¥If x is not a prebx of the path, then
M,! E pf=a # x:=al.
¥IfM,! F stms # AthenM,! | stms # A.

The rule (®NJ) allows us to combine different Hoare
tuples for the same code, and follows standard Hoare logics.
Interestingly, our system hdeur rules of consequence.

The bstrule, (ONs-1), is largely standard, as it allows us to
strengthen the precondition A, and weaken the postcondition
B, and invarianB'. A novelty of this rule, however, is that

it allows the invariant to be conjoined to the postcondition;

any assertion that has not been affected by the code. . Fotthis is sound, because the invariant is guaranteed to hold
this, we need two notions of some code being disjoint from throughout execution of the code, and thus also after it.

an assertion:

ECSTR-15-08 7

For (CoNs-1) we use the entailmedt " \ A', which
guarantees that any state which satisiedlso satisbes',

2015/10/20

and that of the fornB ! \, B' which guarantees that any Theorem 1 (Linking preserves derivations and validity)
pair of states which together satidyalso satisfyB'. This For all modulesM , M '.

is described in Debnition 18. ¥IfM " A{stms } A' | B ,then
The next rule, (ONs-2), is unusual, in that it allows us M$M'" A{stms } A' I B.

to weakerthe precondition, while adding a hypotheBisto ¥IfM E A{stms } A' I B,then

the postcondition, such that the original postcondit®nis M$M'E A{stms} A' | B

only guaranteed iB' holds. The rule is sound, because we
also require that the new preconditidri together with the
new postconditiorB' guarantee that the original precondi-
tion holds in the pre-state. The judgmentd ! A', A"

is debPned in in Debnition 18. For example, we can use this

We now debPne what it means for a method body, and a
class debnition to adhere to its specibcation

We say that a methoshdebned a class adheres to is
specibcation,

M " Cm
r%lf E)obgléep urse if we able to show that the body afwhen executed in a state
{ p2:=pl.sprout } that sgtisbes .A, the difference.between the initial and Pnal
p2 obeysP urse state is described by B, and will preserve BO, where A and
I BO and B are the methodOs pre, postcondition, and invariant.
true Moreover, we say that a class adheres to its specibcation
and deduce that M*™C
true of all its methods adhere to their specibcation. Finally, a
{ p2:=pl.sprout } module adheres to its specibcation,
plpre ObeysPurse! p2 obeysPurse . M" M
! if all the classes itM adhere to their specibcations.
true

The next two rules, (6Ns-3) and (ONs-4), allow us to Debpnition 20(Proving codeOs adherence to specibcation)

swap between tuples where the postcondition is a one-state

assertion,i.e.” A{stms } A' | B' and that where the

postcondtion is a one state assertian, A {stms } B ! B'.
The following lemma is an example entailment.

¥M " Cc,m iff
for all method identibersy and for all A and B' such
thatSpedM,C) = S and
M (S) = specS{ Policy,A{ thism(par) } B, Policy'}
Lemma 2. For all modulesM : we can prove that
M ayAccesgx,y)#M ayAccesgy,z) ! m M ayAcces§x,z). M " A # this obeysS{stmts } Bla/res] ! true

The two last rules in 4 are concerned with adherence to ~ @nd where the method body forCis dePned iM as

specibcation. method n(par) { stmts ; return a }.
The rule (®DE-INVAR-1) expresses that throughoutex- *M * C iffM ™ Cm
ecution of any code, in all intermediate states, for any vari- _ for all methods fronc
ablex for which we know that itobeysa specibcatio, we ¥M " M iff
know that it satisPes any &0Os stated policies. M " Cfor all classesCfromM
The rule (WDE-INVAR-2) guarantees that any teren Below we are debPning and proving the soundness of our

which has been shown to be pointing to an object which Hoare logic. Note that we do not require thdt" M, be-

obeysa specibcatios will continue satisfying the speciP- cause we do not model object creation. If we had object cre-
cation throughout execution of asyms . ation in our system, we would have needed that requirement,
and the proof of soundness would have required slightly

more complex proof techniques such as a generation lemma,
We brst demonstrate that judgments made in the context ofor double induction.

a module are preserved when we link a larger module. In
lemma 3, we state that entailment is preserved by linking:

4.2 Soundness

Theorem 2 (Soundness of the Hoare Logiclfor all mod-
ulesM, codestms and assertion#\, A' andB andB',

Lemma 3. ¥IFM" A{stms }A' | B
thenM E A {stms } A' | B.
¥A 1 v AlimpliesthatA ! yom: Al ¥If M " A{stms } B' | B
¥B ! vy B'impliesthatB ! ym: B' thenM £ A{stms } B' | B.
¥AA' ! y BimpliesthatA,A' | yw: B
¥B,B'! v B"impliesthatB,B'! yv' B" Proof. Fix the moduleM . Then, the proof proceeds by in-

duction on the judgemem " _{_} _! _, whichisin-
ductively characterised by the rules of Figure 3 and Figure 4.
We have one case to consider, for each of the rules.

Inlemma 1 we state that derivability and validity of Hoare
tuples is preserved for larger modules

ECSTR-15-08 8 2015/10/20

Case(VARASG), (FIELDASG), (COND-1) and €oND-2) all
follow trivially from the operational semantics &focal,
the latter two cases also require application of the induc-
tion hypothesis.

Case(METH-CALL-1) follows from the debnition of Hoare
tuple validity (DePnition 17) and that of thebeyspredicate
(see DePnition 13).

Case(METH-CALL-2) expresses the basic axiom of object-
capability systems that Oonly connectivity begets connec-
tivityO [2], and follows from the operational semantics of
F ocaland the debnitions of validity for thd ayA ccess
predicate (see Debnition 13).

Case(FRAME-METHCALL) Is similar to (METH-CALL-2)
in that it expresses a basic axiom of object-capability lan-
guages, namely that in order to cause some visible effect,
one must have access to an object able to perform the
effect'. Coupled with Oonly connectivity begets connec- 52 First Step
tivityO, this implies that a method can cause some effect

for any logical variablevar, and specibcatio8:
(CODE-INAVR-3)

var obeysS { code } true ! varobeysS

Similarly, through application of (RAME-GENERAL),
if z$ x,weget#éz=var{x=rhs }z=var! true,
which also gives that true { x:=rhs } z = zpe ! true.
Then, by (®DE-INVAR-2) and (®Ns-1) we obtain that

(OBEYS-INVAR)
z$ x
z obeysS { x:=rhs } true !

z obeysS

The pre and postconditions for the brst line from the code, ie

only if the caller has (transitive) access to some object
able to cause the effect (including perhaps the callee).
Case(seQuENcH follows from the debnition of
Reach(M,!, code:; code ,) and the debnition of va-
lidity of Hoare tuples (Debnition 17).
Case(FRAME-GENERAL) Follows by the debnition ot
and# .
Case(coNs-1) follows from the debnition of entailment
(DePnition 18) and the fact that
(!, stms) IR each(M,!, stms).
Case(CcoNs-2) follows because,! ' Q' "
onlyiff ,! ' E Qassuming,! ' E Q'.
Case(coNs-3) and E€oNs-4) follow straightforwardly from
the dePnition of entailment and Hoare tuple validity.
Case(CODE-INVAR-1) follows because the debnition of
policy satisfaction for one-state-assertiénsequires that
A holds for all internally-reachable statesvia R each
Case(CODE-INVAR-2) follows straightforwardly from the
debnition of Hoare tuple validity and 2-state-assertion
validity.

Q if and

5. Proof of Escrow:deal

We now outline the most salient steps from the proof of the
Escrow . Note that out formally debPned language does not
support returning from the inside of a method - we did this to
simplify the Hoare rules. Therefore, in Figure 5 we re-write
the mothoddeal so that it obeys this syntactic restriction.

5.1 Preliminaries

for line 4 from Figure 5 are described in Pgure 6. Drawing on
the Pol_sprout policy of theVvalidPurse specibcation,
this step is obtained as follows:

Firstly, by application of 9BEYS-IVAR) and (GoNs-4)
we obtain

(0)
true
{ escrowMoney := sellerMoney .sprout }
sellerMoney . ObeysvalidPurse "
sellerMoney obeysvalidPurse
!
true

Then, from the specibcation gfrout in ValidPurse , and
the rule (METH-CALL -1) we obtain that

@

sellerMoney obeysvalidPurse

{ escrowMoney := sellerMoney

escrowMoney obeysvalidPurse %
CanTrade(escrowMoney , sellerMoney) %
&p pre GoodPrs .p.balance = p.balance pre
I

.sprout }

Then,

true

from (1), and application of (GNSs-2), we obtain

2

true

{ escrowMoney := sellerMoney

sellerMoney e ObeysValidPurse
(escrowMoney obeysvalidPurse %
CanTrade(escrowMoney , sellerMoney) %
&p ! pre GoodPrs . p.balance = p.balance pre)

.sprout }

We brst create some admissible rules, useful for our reason- |

ing.

Firstly, because logical variables cannot be assigned to,

we have that# var { stmts } true ! var= varpe for
any stmts ; therefore, the following rules are admissible

ECSTR-15-08 9

true

Also, by application of (©@DE-INVAR-1), and the specibca-
tion of ValidPurse , we have that

2015/10/20

1| method deal ()
2|{
3 /I setup and validate Money purses
4| escrowMoney := sellerMoney . sprout
s| res := escrowMoney . deposit (0, sellerMoney)
s| if res then {
7 res := buyerMoney . deposit (0, escrowMoney)
8 if res then {
9 res := escrowMoney . deposit (0, buyerMoney)
10 if res then ({
11 /I set up and validate Goods purses
12 escrowGoods = buyerGoods . sprout
13 res := escrowGoods . deposit (0, buyerGoods)
14 if res then ({
15 res := sellerGoods . deposit (0, escrowGoods)
16 if res then {
17 res := escrowGoods . deposit (0, sellerGoods)
18 if res then {
19 /I start the actual exchange
20 res := escrowMoney . deposit (price , buyerMoney)
21 if res then {
22 res := escrowGoods . deposit (amt, sellerGoods)
23 if res then {
24 /I transfer from the two escrows to two accounts
25 sellerMoney . deposit (price , escrowMoney)
26 buyerGoods . deposit (amt, escrowGoods)
27 } else {
28 /I undo the transaction
29 buyerMoney . deposit (price , escrowMoney)
30
31 } else skip
32 } else skip
33 } else skip
34 } else skip
35 } else skip
36 } else skip
7|}
| return res
39| }
Figure 5. Reviseddeal method expressed withotdturn ~ statements
1 true
2 { var escrowMoney := sellerMoney . sprout }
3 sellerMoney . obeysValidPurse I' (escrowMoney obeysValidPurse #
4 CanTrade (escrowMoney , sellerMoney) #
5 escrowMoney .balance =0 #
6 $p %re GoOodPrs .p.balance e = p.balance #
7 sellerMoney obeysValidPurse) #
8 $p :pre GOOdPrs .(p.balance pe = p.balance & M ayAccesgre (SellerMoney ,p)) #
9 $z ;pre Object . (M ayAccesg¢escrowMoney ,z) ! M ayAccesgee (SellerMoney |, z)) #
10 $z,y ;pre Object . (M ayAcces¢z,y) !
1 (M ayAccesgre (z,y) & M ayAccesgre (SellerMoney ,y)#M ayAccesgre (SellerMoney ,z))
12 !
13 true
14
Figure 6. Hoare tuple for brst step iteal
3) By application of (METH-CALL -2) and (RAME-METH-CALL)
true and (3) we obtain

{ escrowMoney

true
!

!'p" pre GoodPrs,
ECYTM1a9A ffect(o, pbalance) # M ayAcces$o, p))

= sellerMoney .sprout }

0 : Object

10 2015/10/20

4)
true
{ escrowMoney := sellerMoney .sprout }
true
!
!'p" pre GoodPrs
(pbalance = p.balance pe#
M ayAccesgye (sellerMoney ,0))

Finally, by application of (McTH-CALL -2) we obtain
(5)
true
{ escrowMoney := sellerMoney .sprout }
true
|
!'Z,y :pre Object . (M ayAcces$z,y) o
(M ayAccesge (z,y) #
M ayAccesgye (sellerMoney ,y)&
M ayAccesgye (sellerMoney ,z))

By application of (®Ns-1), and (®NJ) on (0), (2), (4),
and (5), we obtain the pre-postconditions from Figure 5.

5.3 Second Step

5.4 Step 1 and Step 2 Establish Mutual Trust

When we combine step 1 and step 2 we obtain the Hoare
tuple from bgure 8. Here we make use of the results from bg-
ure 6 and bgure 7, and combine them through tie(8NCE
rule. For example, we use our invariants entailn@aty, ,
whereby for any modul® :
!'Z :pre Object . (M ayAccesgescrowMoney ,z) %

M ayAccesgye (sellerMoney ,z)),
!'Z :pre Object . (M ayAccesgsellerMoney ,z) %

M ayA ccesge (escrowMoney , Z)),
P v
true,
!'Z :pre Object . (M ayAcces$escrowMoney ,z) %

M ayAccesgye (sellerMoney ,z)).

These two steps combined prove that we have now es-
tablished mutual trust between these two purses. This is ex-
pressed in line 4 of bgure 8:
res o

sellerMoney . obeysValidPurse

& escrowMoney obeysValidPurse

The pre and postconditions for the second step are described he bulk of the proof proceeds similarly, with lines 6-18 of
in bgure 7. The main differences between bgures 6 andPgure 5 requiring the same reasoning to establish the remain-
7 are a reRection of the differences between the policiesiNg mutual trust relationships, brst by including the remain-

Pol_sprout and Pol_deposit 1 and Pol_deposit_2

in the validPurse specibcation. Functionallyjeposit
may succeed or fail, indictated by its return vateg , while
sprout always succeedsjeposit may change the bal-

ances of participant purses, whigrout may not.

Crucially for us, the trust essentially the same in both

cases:
src obeyspre ValidPurse ! CanTrade (this , Src) pre

and the risk is very similar N slightly more complex for

deposit which may modify the two purses:

"p.(pobeysye ValidPurse ! p#{this ,src} $
p. balance =p. balance pre)!

but otherwise may not increase risk:

" 0: pre Object . " p obeysyre ValidPurse . M ayAcces§o, p) $
M ayAccesgre (0, p))

ing money purse, and then between all the goods purses.
Finally lines 20-30 complete the escrow exchange by
exchanging money and goods. The core reasoning here is
completely straightforward, as trust is already established
between all concerned purses N although of course we also
have to handle the cases where trust is not established, on
paths where aleposit call fails. We have to continue to
reason about the risk, but since omlgposit andsprout
calls are involved, this reasoning is no different to that of the
prst and second step.

References

[1] T. Kleymann.Hoare Logic and VDM: Machine-checked sound-
ness and completeness praoRhD thesis, The University of
Edinburgh, 1998.

Thus, the reasoning for this step can be justibed in similar [2] M. S. Miller. Robust Composition: Towards a Unibed Approach

ways to those that from pgure 6.

ECSTR-15-08

to Access Control and Concurrency ContrBhD thesis, Balti-
more, Maryland, 2006.

[3] J. H. Morris Jr. Protection in programming languagéaCM,
16(1), 1973.

2015/10/20

© ® N o s W N e

11

true

{ res =escrowMoney . deposit (0, sellerMoney) }
escrowMoney .. obeysValidPurse ' (#p $pre GOOdPrs .p.balance pe = p.balance)
escrowMoney . obeysValidPurse %res " (sellerMoney obeysValidPurse %
#p :pre GOOdPrs .(p.balance pe = p.balance & M ayAccesgre (SellerMoney ,p)) %
#z pre Object . (M ayAccesg¢escrowMoney ,z) ' M ayAccesge (escrowMoney ,z)) %
#z,y ipre Object . (M ayAccesgz,y) !

(M ayAccessgre (2,y) & M ayAccesgre (SellerMoney ,y) % M ayA ccesgre (SellerMoney

|
true

© © N o o A w N e

Figure 7. Hoare tuple for second step deal

true
{ var escrowMoney := sellerMoney . sprout
res := escrowMoney . deposit (0, sellerMoney) }

res r sellerMoney . obeysValidPurse " escrowMoney obeysValidPurse %

sellerMoney . obeysValidPurse " (CanTrade (escrowMoney ,sellerMoney) %
escrowMoney .balance =0 %
#p $pre GOodPrs .p.balance e = p.balance %
sellerMoney obeysValidPurse) %

Ares I A (sellerMoney . obeysValidPurse) %

#p :pre GOOdPrs .(p.balance pe = p.balance & M ayAccesgre (SellerMoney ,p)) %

#z pre Object . (M ayAccesg¢escrowMoney ,z) ! M ayAccesgee (SellerMoney |, z)) %

#z :pre Object . (M ayAccesg¢sellerMoney ,z) ' M ayAccesgre (SellerMoney ,z)) %

#z,y pre Object . (M ayAccesgz,y) !

(M ayAccessgre (z,y) & M ayAccesgre (SellerMoney ,y) % M ayA ccesgre (SellerMoney
|
true

Figure 8. Hoare tuple for brst and second stepléal

ECSTR-15-08 12

2015/10/20

	Reasoning about Risk and Trust in an Open Word

