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Abstract. Contemporary open systems use components developed by different
parties, linked together dynamically in unforeseen constellations. Code needs to
live up to strictsecurity requirements, and ensure the correct functioning of its
objects even when they collaborate with external, potentially malicious, objects.
In this paper we propose special speciÞcation predicates that model risk and trust
in open systems. We specify Miller, Van Cutsem, and TullohÕs escrow exchange
example, and discuss the meaning of such a speciÞcation.
We propose a novel Hoare logic, based on four-tuples, including an invariant
describing properties preserved by the execution of a statement as well as a post-
condition describing the state after execution. We model speciÞcation and pro-
graming languages based on the Hoare logic, prove soundness, and prove the key
steps of the Escrow protocol.

1 Introduction

Traditional systems designs are based on a closed world assumption: drawing a sharp
border around a system where the system as a whole can be trusted because every com-
ponent inside the border is known to be trustworthy, or isconÞned[25] by trustworthy
mechanisms. Open systems, on the other hand, have an open world assumption: they
must interact with a wide range of component objects with different levels of mutual
trust (or distrust) Ñ and whose conÞguration dynamically changes. Given a method
requestx.m(y), what can we conclude about the behaviour of this request if we know
nothing about the receiverx?

In this paper, we lay the foundations for reasoning about the correctness of these
kinds of open systems. Building on the object-capability security model [30] we intro-
duce a Þrst-class notion oftrust, where we write Òo obeys SpecÓ to mean that object
o can be trusted to obey speciÞcationSpec. The obeyspredicate is hypothetical: there
is no central authority that can assign trustworthiness (or not) to objects; there is no
trust bit that we can test. Rather, ÒoobeysSpecÓ is an assumption that may or may not
be true, and we will use that assumption to reason by cases. If we trust an object, we
can use the objectÕs speciÞcationSpec to determine the results of a method call on that
object. If we donÕt trust the object, we determine the maximum amount of damage the
call could do: therisk of calling a method that turns out not to meet its speciÞcation.

Risks are effects against which we want to guard our objects: bounds on the poten-
tial damage caused by calls to untrusted objects. The key to delineating risks are two fur-
ther hypothetical predicates:MayAccessandMayAffect. We writeMayAffect(o,p)



to mean that it is possible that some method invocation ono would affect the object or
propertyp, andMayAccess(o,p) to mean that it is possible that the code in objecto

could potentially gain a capability to access top. This Þrst-class notion of risk comple-
ments our Þrst-class notion of trust:MayAccessandMayAffect let us reason about
the potential damage to a system when one or more objects are not trustworthy.

Our complementary notions of trust and risk are set within a very ßexible speciÞ-
cation language, and supported by an Hoare logic, enabling us to reason whether or not
objects can be trusted to meet their speciÞcations, providing sufÞcient security guar-
antees while mitigating any risks. Building on our earlier work [15, 17] we formalise
and prove correctness, trust, and risk for the Escrow Exchange [31] a trusted third party
that manages exchanges of different goods (e.g. money and shares) between untrust-
ing counterparties [44]. We were surprised to Þnd that the speciÞcation for the Escrow
Exchange is weaker than originally anticipated in two signiÞcant aspects: the escrow
cannot guaranteethat a reported successful transaction implies a) that the participants
were trustworthy, nor that b) the participants are exposed to no risk by an untrustworthy
participant (but we were able to characterize the risk to which participants are exposed).
We were even more surprised to realize that it isimpossible to writean escrow which
would give guarantees a) and b) Ñ all the more striking given that a co-author is one of
the original developers of the escrow example.

Common approaches to reasoning about programs cannot deal with the escrow ex-
change example. Most program speciÞcation and veriÞcation methods have an implicit
underlying assumption that components are meant to be trustworthy (i.e. meet their
speciÞcations). Our approach Þrst makes that assumption explicit (asobeys), lets us
reason hypothetically and conditionally about those trust assumptions, even in cases
where those assumptions fail (by quantifying risk viaMayAccessandMayAffect).

Paper OrganizationSection 2 introduces the Escrow Exchange example, shows why a
traditional speciÞcation is not descriptive enough and why a naive implementation is not
robust enough. Section 3 introduces our constructs and Hoare logic for modelling trust
and risk, which we apply to a revised implementation of the Escrow to reason formally
about its correctness. Section 4 discusses related work, and Section 5 concludes.

Disclaimers Throughout this paper, we make the simplifying assumptions that no two
different arguments to methods are aliases, that the program is executed sequentially,
that we can quantify over the entire heap, that objects do not breach their own encapsu-
lation or throw exceptions, that machines on open networks are not mutually suspicious,
and that any underlying network is error-free. This allows us to keep the speciÞcations
short, and to concentrate on the questions of risk and trust. Aliasing, concurrency, quan-
tiÞcation, conÞnement, network errors, and exceptions can be dealt with using known
techniques, but doing so would not shed further light on the questions we address.

Contribution This paper extends earlier informal work presented at the PLAS work-
shop [17]. Here we contribute the full formal foundations of the system, deÞningobeys,
MayAccess, andMayAffectin the context of theFocalandChainmaillanguages (de-
tails in the full technical report [18]). We present a novel Hoare logic based on four-
tuples to specify properties preserved during execution: this allows us to model trust
and delineate risk even when a methodÕs receiver is unknown. We use our logic to
prove formally that the key steps of the escrow example meet the speciÞcation.
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2 Escrow Exchange

Figure 1 shows a Þrst attempt to implement an escrow exchange, also shown in previous
work [31, 36]. We model both money and goods byPurses (a resource model proposed
in E [32]). The calldst.deposit(amt, src) will either transferamt resources from
thesrc purse to thedst purse and return true, or do nothing and return false. A new,
empty purse can be created at any time by asking an existing purse tosprout Ñ the
new purse has a zero balance but can then be Þlled viadeposit.

1 method deal_version1( ) {
2

3 // make temporary money Purse
4 escrowMoney = sellerMoney.sprout
5 // make temporary goods Purse
6 escrowGoods = buyerGoods.sprout
7

8 res = escrowMoney.deposit(price, buyerMoney)
9 if (!res) then

10 // insufficient money in buyerMoney
11 // or different money mints
12 { return false }
13

14 // sufficient money; same mints.
15 // price transferred to escrowMoney
16 res = escrowGoods.deposit(amt, sellerGoods)
17 if (!res) then
18 // insufficient goods in sellerGoods
19 // or different goods mints
20 { // undo the goods transaction
21 buyerMoney.deposit(price,escrowMoney)
22 return false }
23

24 // price in escrowMoney; amt in escrowGoods.
25 // now complete the transaction
26 sellerMoney.deposit(price, escrowMoney)
27 buyerGoods.deposit(amt, escrowGoods)
28 return true
29 }

Fig. 1.First attempt at Escrow Exchange deal method

The goal of the escrow is to exchangeamt goods forprice money, between the
purses of a seller and buyer. To make the exchange transactional, we use two private
escrowpurses, one for on each side of the transaction (money and goods). Lines 3Ð6
of Figure 1 show how we Þrst set up the escrow purses, by sprouting two new purses
(escrowMoney andescrowGoods) from their respective input purses.
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It is important that the escrow purses are newly created within the method, and can-
not have been manipulated or retained by the buyer or seller, which is why the escrow
askssellerMoney to make one, andbuyerGoods to make the other. The requirements
of an open system means that the escrow method cannot have the escrow purses before
the transaction, because the escrow cannot know the right kind of purses to create, and
there is no central trusted authority that could provide them. Buyers and sellers cannot
provide escrows purses directly, precisely because we must assume they donÕt trust each
other: if they did, they wouldnÕt need to use an escrow.

Second, we attempt to escrow the buyerÕs money by transferring it from thebuyer-
Money purse into the newescrowMoney purse Ñ line 8. If thisdeposit request re-
turns true, then the money will have been transferred. If the deposit fails we abort the
transaction. Third, we attempt to escrow the sellerÕs goods Ñ line 16, again by deposit-
ing them into the other escrow purse. If we are unsuccessful, we again abort the transac-
tion, after we have returned the escrowed money to the buyer Ñ lines 21 and 22. At this
point (line 26) the deal method should have sole access to sufÞcient money and goods in
the escrow purses. The method completes the transaction by transferring the escrowed
money and goods into the respective destination purses Ñ lines 26 and 27. Thanks to
the escrow purses, these transfers should not fail, and indeed, ifdeal_version1 is
called in good faith it will carry out the transaction correctly. Unfortunately, we cannot
assume good faith in a mutually untrusting open system.

2.1 The failure of deal_version1

The method in Figure 1 does not behave correctly in an open system. The critical prob-
lems are assumptions about trust: both the code and the speciÞcation implicitly trust the
purse objects with which they interact.

Imagine if sellerMoney was a malicious, untrustworthy object. At line 4, the
sprout call could itself return a malicious object, which would then be stored in
escrowMoney. At line 8,escrowMoney.deposit(price, buyerMoney) would let
the maliciousescrowMoney purse steal all the money out ofbuyerMoney purse, and
still return false. As a result, the seller would lose all their money, and receive no
goods! Even if the seller was more cautious, and themselves sprouted a special tempo-
rary purse with a balance of exactlyprice to pass in assellerMoney, they would still
lose all this money without any recompense.

Perhaps there is something else we could do Ñ atrusted method on every object,
say, that returnstrue if the object is trusted, andfalse otherwise? The problem, of
course, is that an object that is untrustworthy is, well, untrustworthy: we cannot expect
a trusted method ever to returnfalse. This leads to our deÞnition of trust: trust is
hypothetical, and in relation to some speciÞcation of expected behaviour.

2.2 Modelling Trust and Risk: obeys ,MayAccessandMayAffect

The key claim of this paper is that, to reason about the behaviour of systems in an
open world, we need speciÞcations that let us talk about trust and risk explicitly. In
the rest of this section, we informally introduce three novel speciÞcation language con-
structs: obeys to model trust, andMayAccessandMayAffect to model risk, show
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how they can be used to specify the purse and escrow examples, and argue a revised
deal_version2 method can meet that speciÞcation. Section 3 formalises these ideas.

To model trust, we introduce a special predicate,obeys, of the formo obeysSpec
which we interpret to mean that the current object trustso to adhere to the speciÞcation
Spec. Because we generally canÕt be sure that an object Ñ especially one supplied from
elsewhere in an open system Ñ can actually be trusted to obey a particular speciÞcation,
our reasoning and speciÞcations are hypothetical: analysing the same piece of code
under different trust hypotheses Ñ i.e. assuming that particular objects may or may not
be trusted to obey particular speciÞcations.

Thus,if objecto can be trusted to obey speciÞcationSpec, andSpec had a pol-
icy describing the behaviour of some methodm, then we may expect the method call
o.m(...) to behave according to that policy Ñ otherwise, all bets are off.

To model risk, we introduce predicatesMayAccessandMayAffect, which express
whether an object may read or may affect another object or property. We will write
MayAffect(o,p) to mean that it is possible that some method invocation ono would
affect the object or propertyp. Similarly, we will writeMayAccess(o,p) to mean that
it is possible that the code in objecto could potentially gain a capability to access to
p Ñ that is, a reference top. In practice,MayAccess(o,p) means thatp is in the
transitive closure of the points-to relation on the heap starting fromo including both
public and private references.

2.3 Valid Purse: SpecifyingPurse

Using obeys, MayAccess, andMayAffect, we write theValidPurse speciÞcation
in Figure 2 that makes trust and risk explicit.

ValidPurse consists of Þve policies.Pol_deposit_1 andPol_deposit_2 taken
together distinguish between a successful and an unsuccessful deposit, signalled by re-
turningtrue or false respectively. In the Þrst case, i.e.Pol_deposit_1 where the
result istrue, argumentsrc must have been a valid purse (src obeys ValidPurse)
which can trade with the receiver, andsrc must have sufÞcient balance. In the sec-
ond case, i.e.Pol_deposit_2 where the result isfalse, eithersrc was not a valid
purse, or would not trade with the receiver, or had insufÞcient funds. To quote Miller et
al. [32]: ÒA reported successful deposit can be trusted as much as one trusts the purse
one is depositing intoÓ.

The last two lines in the postcondition ofPol_deposit_1 andPol_deposit_2
provide framing conditions. In the Þrst case, the transaction will happen, but all other
purses will be unmodiÞed (line 14 in Þgure 2) , whereas in the second case no purses
will be modiÞed (line 24 in Þgure 2). Another framing condition, appears on lines
15, 25 and 36 of Þgure 2, and requires that the methods do not leak access to any
ValidPurse object. In other words, ifafter the method call, a pre-existingo has ac-
cess to aValidPurse objectp, theno already had access to ap beforethe call.

Pol_sprout promises that the result is a trusted purse that can trade with the re-
ceiver, no other valid purseÕs balance is affected, and references have not been leaked.

Pol_can_trade_constant guarantees that whether or not two purses can trade
with each other canneverchange, no matter what code is run. This is another key
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1 specification ValidPurse {
2 field balance // Number
3

4 policy Pol_deposit_1 // 1st case:
5 amt2 N
6 { res = this.deposit(amt, src) }

7 res ! (
8 // TRUST
9 src obeyspreValidPurse ^ CanTrade(this,src)pre

10 // FUNCTIONAL SPECIFICATION
11 ^ 0amtsrc.balancepre ^
12 this.balance=this.balancepre+amt ^

src.balance=src.balancepre�amt ^
13 //RISK
14 8p.(p obeyspreValidPurse ^ p /2 {this,src} !

p.balance=p.balancepre) ^
15 8o:preObject. 8p obeyspreValidPurse.

MayAccess(o,p) ! MayAccesspre(o,p) )
16

17 policy Pol_deposit_2 // 2nd case:
18 amt2 N
19 { res = this.deposit(amt, src) }

20 ¬res ! (
21 // TRUST and FUNCTIONAL SPECIFICATION
22 ¬( src obeyspre ValidPurse ^ CanTrade(this,src)pre ^

0amtsrc.balancepre) ^
23 // RISK
24 8p.(p obeyspreValidPurse! p.balance=p.balancepre) ^
25 8o:preObject. 8 p obeyspreValidPurse.

MayAccess(o,p) ! MayAccesspre(o,p) )

Fig. 2.ValidPurse speciÞcation

ingredient of our approach: we can require that our code must preserve properties in the
face of unknown code.

Pol_protect_balance guarantees that a valid pursepÕs balance can only be
changed: ÑMayAffect(o,p.balance) Ñ by an objecto that may access that purse:
MayAccess(o,p).

Finally, the abstract predicateCanTrade holds when twoPurses can trade with
each other.CanTrade must be reßexive, but does not require that its arguments have
the same class. It guarantees thatdeposit can transfer resources from one purse to
another. This could involve a clearing house, interbank exchange, or other mechanisms
abstract predicates can be implemented in different ways.

The use of assertions about the pre-state in methodsÕ postconditions increases the
expressive power of our speciÞcations. For example, consider:
(A) amt 2 N {res=this.deposit(amt,src)} res! scr obeys

pre

ValidPurse

This allows us to deduce properties about the pre-state by observing the result of the
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27 policy Pol_sprout
28 true
29 { res = this.sprout() }

30 // TRUST
31 res obeys ValidPurse ^ CanTrade(this,res)pre ^
32 // FUNCTIONAL SPECIFICATION
33 res.balance=0 ^
34 // RISK
35 8p.(p obeyspreValidPurse !

p.balance=p.balancepre ^ res 6= p) ^
36 8o:preObject. 8 p obeyspreValidPurse.

MayAccess(o,p) ! MayAccesspre(o,p) )
37

38 policy Pol_can_trade_constant
39 true
40 { any_code }

41 8 prs1,prs2 obeyspreValidPurse.
CanTrade(prs1,prs2)  ! CanTradepre(prs1,prs2)

42

43 policy Pol_protect_balance
44 // RISK
45 8 o,p:Object. p obeysValidPurse ^

MayAffect(o,p.balance) ! MayAccess(o,p)
46 }
47

48 abstract predicate CanTrade(prs1,prs2) is reflexive

Fig. 2.ValidPurse speciÞcation (contd.)

method call. Such a speciÞcation cannot be easily translated into one which does not
make use of this facility, as in:
(B) scr obeysValidPurse ^ amt 2 N {res=this.deposit(amt,src)} res

(B) differs from (A) in that (B) requires us to establish thatscr obeysValidPurse
before making the call, while (A) does not.

2.4 Establishing Mutual Trust

An escrow must build a two-way, trusted transfer by combining one-way transfers.
FromPol_deposit_1 we obtain that the callres1=dest.deposit(amt, src) lets
us concluderes1^ dest obeysValidPurse! src obeysValidPurse. This trust is
just one way: from the destination to the source purse. We can establish mutual trust be-
tween two purses by then attempting to perform a second depositin the reverse direction
from destination to source:res2=src.deposit(amt, dest) which in turn gives
res2^ src obeysValidPurse! dest obeysValidPurse. Reasoning conditionally,
on a path whereres1 ^ res2 are true, we can then establish mutual trust:

dest obeys ValidPurse  ! src obeys ValidPurse

We establish this formally in Section 3.4, having only argued informally earlier [17, 36].
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As with much of our reasoning, this is both conditional and hypothetical: at a partic-
ular code point, when twodeposit requests have succeeded (or rather, that they have
both reportedsuccess) then we can conclude that either both are trust worthy, or both
are untrustworthy: we have onlyhypotheticalknowledge of theobeyspredicate.

2.5 Escrow with Explicit Mutual Trust

1 method deal_version2( ) // returns Boolean
2 {
3 // setup and validate Money purses
4 escrowMoney = sellerMoney.sprout
5 res=escrowMoney.deposit(0, sellerMoney)
6 if (!res) then {return false}
7 res = buyerMoney.deposit(0, escrowMoney)
8 if (!res) then {return false}
9 res = escrowMoney.deposit(0, buyerMoney)

10 if (!res) then {return false}
11

12 // setup and validate Goods purses
13 // similar to lines 4�10 from above, but for Goods
14

15 // make the transaction
16 // as in lines 8�29 from Fig.1
17 }

Fig. 3.Reviseddeal_version2 method

Two way deposit calls are sufÞcient to establish mutual trust, but come with risks.
For example, as part of validating that a buyerÕs purse the sellerÕs purse, we must pass
the buyerÕs purse as an argument in adeposit call to the sellerÕs purse, e.g.
sellerMoney.deposit(0, buyerMoney)

If the sellerÕs purse is not in fact trustworthy, then it can take this opportunity to steal all
the money in the buyerÕs purse before the transaction ofÞcially starts, even if theamt

that is supposed to be deposited is0.
We can minimise this risk by careful use of escrow purses. Rather than mutually

validating buyers and sellers directly, we can create an escrow purse on the destination
side of the transaction (the sellerÕs money and the buyerÕs goods) and then mutually
validate the buyerÕs and sellers actual purses against the escrow Ñ resulting in a chain
of mutual trust between the destination purse and the escrow purse, and the escrow
purse and the source purse. This allows us to hypothesise that the source and destination
purses are mutually trusting before we start on the transaction proper.

The resulting escrow method is in Figure 3. Line 4 creates aescrowMoney purse
and then lines 5Ð10 hypothetically establish mutual trust between theescrowMoney,
sellerMoney, andbuyerMoney purses. ThesellerMoney purse doesnÕt need to val-
idateescrowMoney explicitly (sellerMoney.deposit(0,escrowMoney)) because
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thesprout method speciÞcation says sprouted purses can trusted as much as their par-
ent purses. (Figure 4 illustrates the trust relationships.) If any of thesedeposit request

seller
Money

escrow
Money

buyer
Moneydeposit

(line 5)

deposit
(line 7)

deposit
(line 9)

sprout
(line 4)

Fig. 4.Establishing Mutual Trust. Dashed arrows show purse validation.

fail, we abort. Afterwards we do exactly the same, but for goods purses rather than
money purses. Finally, we carry out the escrow exchange itself, in exactly the same
manner as lines 8Ð29 of the Þrst implementation in Figure 1.

2.6 Specifying the Mutual Trust Escrow

Figure 5 shows a speciÞcation for the revised escrow deal method from Figure 3.
This speciÞcation uses conditional and hypothetical reasoning to distinguish four cases,
based on the value of the result and the trustworthiness of the participants. We use these
auxiliary deÞnitions:
GoodPrs= { p | p obeyspre ValidPurse }
PPrs= { sellerMoney, sellerGoods, buyerMoney, buyerGoods }
OthrPrs=GoodPrs \ PPrs
BadPPrs=PPrs \ GoodPrs

The setPPrs contains the fourparticipant pursespassed as arguments.BadPPrs con-
tains the untrustworthy participant purses.GoodPrs are all trustworthy purses in the
system that do conform to theValidPurse speciÞcation, andOthrPrs are the trust-
worthy purses that donotparticipate in this particular deal. We can now discuss the four
cases of the policy:

1st case:The result istrue and all participant purses are trustworthy. Then, the
goods and money purses can trade with each other, and there was sufÞcient money in
the buyerÕs purse and sufÞcient goods in the sellers purse. In this case, everything is Þne,
so the transfer can proceed:price will have been transferred from the buyerÕs to the
sellerÕs money purse, andamt will have been transferred from the sellerÕs to the buyerÕs
goods purse. No risk arises: no other pursesÕ balance will change (whether passed in to
the method or not).

2nd case:The result isfalse and all participant purses are trustworthy. Then one
or more of the functional correctness conditions are not satisÞed: pursesÕ were unable
to trade with each other, or input purses did not have sufÞcient balance. Again, no risk
arises to any purses.

3rd case:The result isfalse and some participant purse is untrustworthy. In this
case, no trustworthy pursesÕ balances have been changed Ñ unless they were already
accessible by an untrustworthy purse passed in to the method.
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1 specification ValidEscrow {
2 fields sellerMoney, sellerGoods, buyerMoney, buyerGoods
3 fields price, amt // N
4

5 policy Pol_deal
6 price,amt2 N ^ price,amt>0
7 { this.deal( ) }

8 res ^ BadPPrs=; ! ( // 1st case:
9 CanTrade(buyerMoney,sellerMoney) ^

10 CanTrade(buyerGoods,sellerGoods) ^
11 buyerMoney.balance=buyerMoney.balancepre�price ^
12 sellerMoney.balance=sellerMoney.balancepre+price^
13 buyerGoods.balance=buyerGoods.balancepre+amt ^
14 sellerGoods.balance=sellerGoods.balancepre�amt ^
15 8p:preOthrPrs. p.balance=p.balance.pre ^
16 8o:preObject,p:preGoodPrs.
17 (MayAccess(o,p) !MayAccess(o,p)pre) )
18 ^
19 ¬res ^ BadPPrs=; ! ( // 2nd case:
20 ¬( CanTrade(buyerMoney,sellerMoney) ^
21 CanTrade(buyerGoods,sellerGoods) ^
22 buyerMoney.balancepre � price ^
23 sellerGoods.balancepre � amt ) ^
24 8p:preGoodPrs. p.balance=p.balance.pre ^
25 8o:preObject,p:preGoodPrs.
26 (MayAccess(o,p) !MayAccess(o,p)pre) )
27 ^
28 ¬res ^ BadPPrs 6=; ! ( // 3rd case:
29 8p:preGoodPrs. (p.balance=p.balance.pre _
30 9 bp2BadPPrspre.MayAccess(bp,p)pre) ^
31 8o:preObject,p:preGoodPrs.( MayAccess(o,p) !
32 (MayAccess(o,p)pre _9b2BadPPrspre.MayAccess(b,p)pre)) )
33 ^
34 res ^ BadPPrs 6= ; ! ( // 4th case:
35 buyerMoney obeysValidPurse  ! sellerMoney obeysValidPurse ^
36 buyerGoods obeysValidPurse  ! sellerGoods obeysValidPurse ^
37 8p:preOthrPrs. (p.balance=p.balance.pre _
38 9bp2 BadPPrspre.MayAccess(bp,p)pre) ^
39 8o:preObject,p:preGoodPrs. (MayAccess(o,p)!
40 (MayAccess(o,p)pre_9b2BadPPrspre.MayAccess(b,p)pre)) )
41 }

Fig. 5.ValidEscrow speciÞcation

4th case:The result istrue and some participant purse is untrustworthy Ñ actually
at least two matching participant purses are untrustworthy. That is, a pair of matching
purses have cošperated to suborn the escrowand we cannot tell. Therefore, either both
money purses are untrustworthy, (as per line 35), or both goods purses are untrustwor-
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thy, (as per line 36), or all four are bad. The risk is that an uninvolved trustworthy purseÕs
balance can be changed if it was previously accessible from a bad purse. The Þrst and
second cases correspond to a traditional speciÞcation, because traditional speciÞcations
assume all objects are trustworthy. The third and fourth cases arise precisely because
we are explicitly modelling the trust and risk involved in an open system.

DiscussionThe 3rd and 4th case represent more of a risk than we would like: ideally
(as in the 2nd case) weÕd hope nothing should have changed. But an escrow method
cannot undo a system that is already suborned Ñ if one of the participant purses is
already beneÞting from a security breach, passing that purse in to this method gives
it an opportunity to exercise that breach. On the other hand, the risk is contained: this
method cannot make things worse.

The 4th case does not prevent trustworthy participant purses from being modiÞed,
to cater e.g., for the possibility that the two money purses are trustworthy, while the two
goods purses are not, in which case the money transaction will take place as expected,
while all bets are off about the goods transaction. We can give the stronger guarantee
for the 3rd case, because by the time the escrow starts making non-0 transactions it has
established that the purses in each pair are both either trustworthy or both not.

Most importantly (perhaps surprisingly) the return value of the method,res, does
not indicate whether the participants were trustworthy or not. Atrue result may be
returned in the 1st case (all purses trustworthy) as well as the 4th (some purses are un-
trustworthy). The return value indicatesonlywhether the escrow attempted to complete
the transaction (returningtrue) or abort (returningfalse). This came as a surprise to
us (and to the escrowÕs designers [31].) As with much of our reasoning around trust,
this leads to yet more conditional reasoning, which must be interpreted hypothetically.

Nevertheless, the return value does communicate a valuable guarantee to an honest
participant, whose money and goods purses are both trustworthy: Ifdeal returnstrue,
then the exchange has taken place. Furthermore if it returnsfalse, the exchange has
not taken place and withno morerisk to the honest purses than existed before the call.
TheValidEscrow speciÞcation also gives a guarantee to other purse objects even if
they did not participate in the deal: dishonest purses can only change other pursesÕ
balances if they had prior access to those other purses.

3 A Formal Model of Trust and Risk

In this section we provide an overview of our core programming language,Focal, our
speciÞcation language,Chainmail, and our Hoare logic. The Hoare logic usesfour-
tuplesbecause it includes an invariant that must be preserved during the execution of
a statement as well as a postcondition established afterwards. We also outline a key
step required to prove thatdeal_version2 meets theValidEscrow speciÞcation:
we prove that two purses can establish mutual trust, and formally delineate the risk.
Many details are relegated to our technical report [18]; here we adopt its numbering for
deÞnitions.
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3.1 Focal

We deÞne a small object oriented language,Focal (Featherweight Object Capability
Language, not to be confused with FOCAL [28]).Focal supports classes, Þelds and
methods. (Figures 1 and 3 are effectively examples ofFocal.) Focal is memory-safe:
it does not allow addresses to be forged, or non-existent methods or Þelds to be called,
read or written.Focal is dynamically typed: it does not check that the arguments to a
method call or a Þeld write are of the appropriate type either statically or dynamically:
similar to JavaScript, Grace, E, and DartÕs unchecked mode.

Modules,M , are mappings from class identiÞers toFocal class deÞnitions, and
from predicate identiÞers toChainmailassertions as described in section 3.2. The link-
ing operator⇤ combines these deÞnitions, provided that the modulesÕ mappings have
separate domains, and performs no other checks. This reßects the open world setting,
where objects of different provenance interoperate without a central authority. For ex-
ample, takingM

p

as a module implementing purses, andM

e

as another module imple-
menting the escrow,M

p

⇤M
e

is deÞned butM
e

⇤M
e

is not.
Focal enforces a weak form of privacy for Þelds; only the receiver may modify

these Þelds, and anybody may read them.
The operational semantics ofFocal takes a moduleM and a runtime state� =

frame ⇥ heap and maps statements onto a new state�

0.

DeÞnition 6 (Shape of Execution).
; : Module⇥ state⇥ Stmts �! state

Arising and Reachable ConÞgurationsPolicies need to be satisÞed in allconÞgurations
(pairs of states and statements) which may arise during execution of the program. For
example, if a program contains a class which has Þeld which is not exported, and where
this Þeld is initialized to0 by the constructor, and incremented by3 in all method calls,
then in the arising conÞgurations the value of this Þeld is guaranteed to be a multiple
of 3. Thus, through the concept of arising conÞgurations we can ignore conÞgurations
which are guarantee not to arise.

To deÞne arising conÞgurations we need the concept of initial conÞguration, and
reachability. A conÞguration isreachablefrom some starting conÞguration if it is reached
during the evaluation of the starting conÞguration after any number of steps. We deÞne
the functionReach : Module ⇥ state ⇥ Stmts �! P(state ⇥ Stmts) by cases on the
structure of the statements. Note thatReach(M ,�, stmts) is deÞned, even when the
execution should diverge. This is important, because it allows us to give meaning to
capability policies without requiring termination.
We then deÞneArising(M ) as the set of runtime conÞgurations which may be reached
during execution of some initial context (�0,stmts0).

DeÞnition 7 (Arising and Initial conÞgurations).
Init : Module �! P(state ⇥ Stmt)

Arising : Module �! P(state ⇥ Stmts)
Init(M ) = { ( �0, new c .m( new cÕ) ) | c , cÕ 2 dom(M ),

where�0 = ((◆0, null ),�0), and�0(◆) = (Object , ;) }
Arising(M ) =

S
(�,stmts )2Init(M ) Reach(M ,�, stmts )

12



3.2 Chainmail

Chainmail is a speciÞcation language where a speciÞcation is a conjunction of a set of
named policies. (Figures 2 and 5 are examples ofChainmailspeciÞcations.)

Chainmail policies are based on one-state assertions (A) and two-state assertions
(B). To express the state in which an expression is evaluated, we annotate it with a
subscript. For example,x > 1 is a one-state, andx

pre

� x

post

= 1 is a two-state as-
sertion. Validity of an assertion is deÞned in the usual manner,e.g.in a state� with
�(x) = 4 we haveM,� |= x > 1. If we also have�0(x) = 3, then we obtain
M ,�,�

0 |= x

pre

� x

post

= 1. Chainmail speciÞcations may also express ghost in-
formation, which is not stored explicitly in the state� but can be deduced from it Ñ
e.g. the length of a null-terminated string.

Policies can have one of the three following forms: 1) invariants of the formA,
which require thatA holds at all visible states of a program; or 2)A { code } B, which
require that execution ofcode in any state satisfyingA will lead to a state satisfying
B wrt the original state or 3)A { any_code } B which requires that execution ofany
code in a state satisfyingA will lead to a state satisfyingB wrt the original state.

DeÞnition 12 (Policies).
Policy ::= A | A {code } B | A {any_code } B

PolSpec ::= specification S { Policy

⇤ }

One-state assertions include assertions about expressions (such as, > e.t.c.) and
four additional assertions:Expr obeysSpecId to model trust, i.e. that an object conÞrms
to a speciÞcation; andMayAccessandMayAffect to model risk, i.e. whether one
object may access another, or alter a property. These arehypothetical, in that they talk
about the potential effects or behaviour of code: we cannot somehow evaluate their
truth-value when executing the program. The fourth assertionExpr :ClassId simply
tests class membership.

Validity of one-state assertions is expressed through the judgmentM ,� |= A. The
key case is that some expression obeys a speciÞcation if it satisÞes that speciÞcationÕs
policies in all reachable conÞgurations arising from the module.

(from DeÞnition 13):
Ð M ,� |= e:C iff �(becM ,�

) #1= C.
Ð M ,� |= MayAffect( e, e0) iff there exist methodm, arguments̄a, state�0, identi-

Þerz, such thatM ,�[z 7! becM ,�

], z.m(ā) ; �

0, andbe0cM ,�

6= be0cM ,�#1,�
! .

Ð M,� |= MayAccess(e, e’) iff there exist Þelds̄f, such thatbz.f̄cM ,�[z 7!becM ,! ] =
be’cM ,�

Ð M ,� |= eobeysPolSpecIdiff
8 (�, stmts)2Arising(M). 8i2{1..n}. 8�0

, stmts0.
(�0

, stmts0)2 Reach(M,�, stmts) �! M,�

0[z 7! bec
�

] |= Policy
i

[z/this ]
wherez is a fresh variable in�0, and where we assume thatPolSpecIdwas deÞned
as specification PolSpecId{ Policy1, ...Policy

n

}.

Two-state assertions allow us to compare properties of two different states. Validity
of two-state assertionsM ,�,�

0 |= B is deÞned similarly to one-state assertions, using
cases. We can now deÞne adherence to policy,M ,� |=

pol

Policy:
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DeÞnition 15 (Adherence to Policies).
Ð M ,� |=

pol

A iff M ,� |= A

Ð M ,� |=
pol

A {code }B iff
( M ,� |= A ^ M ,�, code ; �

0 �! M ,�,�

0 |= B )
Ð M ,� |=

pol

A {any_code } B iff
8code . ( (�, code ) 2 Arising(M ) ^ M ,� |= A ^ M ,�, code ; �

0

�! M ,�,�

0 |= B )

3.3 Hoare Logic

The Hoare logic allows us to prove adherence to policies. In order to reßect that the code
to be veriÞed is executed in an open system, and that it calls code whose speciÞcation
and trustworthiness is unknown to the code being veriÞed, we use Hoare four-tuples
rather than Hoare triples, so that not only do they guarantee a postcondition holdsafter
execution of the code, but also guarantee that an invariant is preservedduringexecution
of the code. These invariants are critical to modelling risk, as they let us talk about the
absence of temporary but unwanted effects caused on objects during execution.

A Hoare four-tuple is eitherM ` A { stms } A

0 1 B (executingstms in any
state satisfyingA will lead to a state which satisÞesA0) or M ` A { stms } B

0 1 B

(executingstms in any state satisfyingA will lead to a state where the relation of the
old and new state is described byB0). Critically, both promise that the relation between
the initial state, andanyof the intermediate states reached by execution ofstms, will
maintain the invariantB. The execution ofstmts may call methods deÞned inM , and
the predicates appearing inA, A0, B0, andB, may use predicates deÞned inM . When
M is implicit from the context, we use the shorthand` A { stms } A

0 1 B.
In order to model open systems, we require that after linkinganymodule with the

module at hand, the policy will be satisÞed. As stated in [34],ÒA programmer should be
able to prove that his programs have various properties and do not malfunction, solely
on the basis of what he can see from his private bailiwick.Ó

DeÞnition 16 (Validity of Hoare Four-Tuples).
M |= A { stms } B

0 1 B iff 8M 0
,�.

(�, _) 2 Arising(M ⇤M 0) ^ M ⇤M 0
,� |= A ^ M ⇤M 0

,�, stms ; res ,�

0

�!
M ⇤M 0

,�,�

0 |= B

0 ^ 8�002Reach(M,�, stmts ). M ⇤M 0
,�,�

00 |= B

Figure 6 shows a selection of our Hoare rules. It starts with two familiar Hoare
Logic rules: In (VARASG) and (FIELDASG) the postconditions use the previous value
of the right-hand-side, and thus allow us to deduce,e.g.:

` this .f = 21 { this .f = 2 ⇤ this .f } this .f = 42 1 true.
(METH-CALL -1) is also familiar, as it reasons over method calls under the assumption
that the receiverobeysa speciÞcationS, and that the current state satisÞes the precon-
dition of m as deÞned inS.

The remaining rules are more salient.
(METH-CALL -2) expresses the basic axiom of object-capability systems that Òonly

connectivity begets connectivityÓ [30]. It promises in the postcondition that the result
of the method callv cannot expose access to any objectz that wasnÕt accessible initially
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(VARASG)

` true {v:=a } v = apre ! true

(FIELDASG)

` true { this.f:=a } this.f = apre ! true

(METH-CALL -1)
M (S) = spec S { P olicy, A { this.m(par) } B, P olicy ! }
` x obeysS ^ A [x/ this,y/ par] {v :=x.m(y) } B [x/ this,y/ par,v/ res] ! true

(METH-CALL -2)
B ⌘ 8z :pre Object. MayAccess(v,z)! (MayAccesspre(x,z) _ MayAccesspre(y,z) )
B ! ⌘ 8z,u :pre Object. ( MayAccess(u,z)!

(MayAccesspre(u,z) _
( (MayAccesspre(x,z) _MayAccesspre(y,z)) ^
(MayAccesspre(x,u) _MayAccesspre(y,u)) ) ) )

` true {v :=x.m(y) } B ! B !

(FRAME-METHCALL )
` A { v := x.m(y) } true ! B
B ⌘ 8z.( MayAffect(z, A !)! B !(z) ) ^

8z.( (MayAccess(x,z) _MayAccess(y,z) _New(z) ) ! ¬B !(z) )
` A ^ A! {v:=x.m(y) } A! ! true

(CODE-INVAR -1)
M (S) ⌘ spec S { P olicy, P, P olicy ! }
B ⌘ 8x.(x obeysS! P [/ x/ this] )
` true {stmts } true ! B

(CODE-INVAR -2)

` eobeysS {stmts } true ! epre obeysS

(CONS-2)
` A {stmts } B ! B !!

A ! , B ! !M A, _
` A! {stmts } B !!B ! B !!

(CONS-3)
` A {stmts } B ! B !

A, B !M _, A !

` A {stmts } A! ! B !

(CONS-4)
` A {stmts } A! ! B !

A, A ! !M B
` A {stmts } B ! B !

(SEQUENCE)
` A {s1 } B1 ! B ! ` A2 {s2 } B2 ! B ! A, B 1 !M _, A2 B1, B 2 !M B
` A {s1 ; s2 } B ! B !

Fig. 6.A selection of Hoare Logic rules; we assume that the moduleM is globally given

to the method callÕs receiverx or argumenty. Additionally, it also promises that,during
execution of the method, accessibility does not change, unless the participants (herez

andu) were accessible to the receiver and/or the argumentbeforethe call. Note that this
latter promise is made via the invariant (fourth) rather than the postcondition (third) part
of the Hoare-tuple. Note also that this rule is applicableeven if we know nothingabout
the receiver of the call: this rule and the invariants are critical to reasoning about risk.

(CODE-INVAR -1) allows reasoning under the hypothesis that an objecto obeysits
speciÞcationS: in this caseo can be trusted to act in accordance withS always.

(FRAME-METHCALL ) also expresses an axiom of object-capability languages, namely
that in order to cause some visible effect, one must have access to an object able to per-
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form the effect. Coupled with Òonly connectivity begets connectivityÓ, this implies that
a method can cause some effect only if the caller has (transitive) access to some object
able to cause the effect (including perhaps the callee).

The remaining rules each make use of the entailment judgement!
M

, which al-
lows converting back and forth between one-state and two-state assertions and comes
in number of ßavours; the relevant ones are deÞned as follows.

DeÞnition 19 (Entailment).

1. A,B !M A

0
, A

00 iff
8�,�0

. � |= A ^ �,�

0 |= B �! � |= A

0 ^ �

0 |= A

00

2. A,A

0 !M B iff
8�,�0

. � |= A ^ �

0 |= A

0 �! �,�

0 |= B

3. B,B

0 !M B

00 iff
8�,�0

,�

00
. �,�

0 |= B ^ �

0
,�

00 |= B

0 �! �,�

00 |= B

00

The rules (CONS-3) and (CONS-4) make use of the entailment judgement to allow
converting between one- and two-state postconditions during Hoare logic reasoning.
To reason across sequenced computationss1; s2, the (SEQUENCE) rule requires Þnding
a one-state assertionA2 that holds afters1 and is the precondition ofs2. It uses the
entailmentA,B1 !

M

_, A2 to require thats1Õs execution guaranteesA2, and the en-
tailmentB1, B2 !

M

B to require that the combined execution ofs1 ands2 guarantees
the top-level postconditionB.

Theorem 3 (Soundness of the Hoare Logic).
For all modulesM , statementsstms and assertionsA, B andB0 ,

If M ` A { stms } B

0 1 B, thenM |= A { stms } B

0 1 B.

The theorem is proven in [18].

In summary, we have four Ócode agnosticÓ rules Ñ rules which are applicable regard-
less of the underlying code. Rules (FRAME-METHCALL ) and (METH-CALL -2) express
restrictions on the effects of a method call. Normally such restrictions stem from the
speciÞcation of the method being called, but here we can argue in the absence of
any such speciÞcations, allowing us to reason about risk even in open systems. Rules
(CODE-INVAR-1) and (CODE-INVAR-2) are applicable onany code, and allow us to
assume that an object whichobeysa speciÞcationS, satisÞes all policies fromS, and
that the object, once trusted, will always beobeyingS.

3.4 Proving Mutual Trust

We now use our Hoare Logic to prove the key steps of the escrow protocol, establishing
mutual trust and delineating the risk. Here we have space to show just one-way trust
between the escrow and seller in full: the remaining reasoning to establish mutual trust
is outlined in the technical report [18]. Figure 7 shows the Hoare tuple for the Þrst state-
ment in methoddeal (line 4 from Figure 3). Lines 3-8 of Figure 7 describe the post-
condition in caseescrowMoney indeed obeysValidPurse, while lines 9-17 make
absolutely no assumption about the trustworthiness, or provenance, ofescrowMoney.
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1 true
2 { var escrowMoney := sellerMoney.sprout }
3 sellerMoneypre obeysValidPurse �!
4 ( escrowMoney obeysValidPurse ^
5 CanT rade(escrowMoney,sellerMoney) ^
6 escrowMoney.balance = 0 ^
7 8p 2pre GoodPrs. p.balancepre = p.balance ^
8 sellerMoney obeysValidPurse ) ^
9 8p :pre GoodPrs.

10 ( p.balancepre = p.balance _MayAccesspre(sellerMoney, p) ) ^
11 8z :pre Object.
12 (MayAccess(escrowMoney, z) �!MayAccesspre(sellerMoney, z) ) ^
13 8z, y :pre Object.
14 (MayAccess( z, y ) �!
15 (MayAccesspre( z, y ) _
16 MayAccesspre(sellerMoney, y )^
17 MayAccesspre(sellerMoney, z ) ) )
18 !
19 true
20

Fig. 7.Hoare tuple for Þrst step indeal

By Pol_sprout and (METH-CALL -1) we obtain that

(A)

sellerMoneyobeysValidPurse
{ escrowMoney := sellerMoney.sprout}

escrowMoneyobeysValidPurse ^ ...rest...

1

true

By application (CONS-2) on the above we obtain

(B)

true

{ escrowMoney := sellerMoney.sprout}
sellerMoney

pre

obeysValidPurse !
( escrowMoneyobeysValidPurse ^ ...rest... )

1

true

To obtain line 8, we apply a basic framing rule ((FRAME-GENERAL) in [18]) and get
` ... { escrowMoney := sellerMoney.sprout } escrowMoney

pre

= escrowMoney 1 ...,
and then, in conjunction with (CODE-INVAR -2), (CONS-2) we also obtain that

(C)

true

{ escrowMoney := sellerMoney.sprout}
escrowMoney

pre

obeysValidPurse ! escrowMoneyobeysValidPurse
1

...

We can then apply a conjunction rule ((CONJ) in [18]) on (B) and (C), and obtain the
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postcondition as in 4-8.
To obtain 9-11, we will apply several of the code-agnostic rules. After all, here we can-
not appeal to the speciÞcation ofsprout, as we do not know whethersellerMoney
adheres toValidPurse. We start by application of (METH-CALL -2), and a conse-
quence rule ((CONS-1) in [18]):

(D)

true

{ escrowMoney := sellerMoney.sprout}
true

1

8z. MayAccess(sellerMoney, z) ! MayAccess
pre

(sellerMoney, z)
By applying the fact that8u, v, w, MayAccess(u, v)^MayAccess(v, w) ! MayAccess(u,w),
and conjunction and inference rules on (D), we get:

(E)

¬MayAccess(sellerMoney, p)
{ escrowMoney := sellerMoney.sprout}

true

1

8z. MayAccess(sellerMoney, z) ! ¬MayAccess(z, p)
By application of rule (CODE-INVAR -1), we obtain:

(F)

true

{ escrowMoney := sellerMoney.sprout}
true

1

8p.( p obeysValidPurse ! (8z.MayAffect(z, p.balance) ! MayAccess(z, p)) )
Through a combination of (E) and (F) and application of conjunction, and application
of (FRAME-METH-CALL), we obtain that

(G)

¬MayAccess(sellerMoney, p)
{ escrowMoney := sellerMoney.sprout}

true

1

p obeys
pre

ValidPurse ! (p.balance = p.balance
pre

)
Now by applying (CONS-2) on (F), we obtain

(H)

true

{ escrowMoney := sellerMoney.sprout}
true

1

8p. pobeys
pre

ValidPurse !
( p.balance = p.balance

pre

_ MayAccess(sellerMoney, p) )
We now apply (CONS-1) from [18] to conjoin the invariant and postcondition, obtaining

(I)

true

{ escrowMoney := sellerMoney.sprout}
8p. pobeys

pre

ValidPurse !
( p.balance = p.balance

pre

_ MayAccess(sellerMoney, p) )
1

true

Last, we obtain lines 11-12 from (METH-CALL -2). We also obtain lines 13-17 from
(METH-CALL -2), and (CONS-1) from [18].
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4 Related Work

Object Capabilities and Sandboxes.Capabilitieswere developed in the 60Õs by Den-
nis and Van Horn [10] within operating systems, and were adapted to the program-
ming languages setting in the 70Õs [34].Object capabilitieswere Þrst introduced [30]
in the early 2000s, and much recent work investigates the safety or correctness of ob-
ject capability programs. GoogleÕs Caja [33] applies sandboxes, proxies, and wrappers
to limit componentsÕ access toambientauthority. Sandboxing has been validated for-
mally: Maffeis et al. [27] develop a model of JavaScript, demonstrate that it obeys two
principles of object capability systems and show how untrusted applications can be
prevented from interfering with the rest of the system.
JavaScript analyses.More practically, there are a range of recent analyses of JavaScript
[23, 5, 38, 26, 43] based on static analyses or type checking. Lerner et al. extend these
approaches to ensure browser extensions observeÒprivate modeÓ[26], while Dimoulas
et al. [11] enforce explicit access policies. The problem posed by the Escrow example
is that it establishes a two-way dependency between trusted and untrusted systems Ñ
precisely the kind of dependencies these techniques prevent.
Concurrent ReasoningOur Hoare logic invariants are similar to the guarantees in
Rely-Guarantee reasoning [22]. Deny-Guarantee [12] distinguishes between assertions
guaranteed by a thread, and actions denied to all other threads. Deny properties corre-
spond to our requirements that certain properties be preserved by all code linked to the
current module. Compared with our work, rely-guarantee and deny-guarantee assumes
cošperation: composition is legal only if threads adhere to their rely or deny properties
and guarantees. Our modules have to be robust and ensure that their invariants cannot
be affected byanyarbitrary, uncertiÞed, untrusted code.
Relational models of trust.Artz and Gil [4] survey various types of trust in computer
science generally, although trust has also been studied in speciÞc settings, ranging from
peer-to-peer systems [2] and cloud computing [20] to mobile ad-hoc networks [9], the
internet of things [19], online dating [37], and as a component of a wider socio-technical
system [8, 45]. Considering trust (and risk) in systems design, Cahill et al.Õs overview of
the SECUREproject [6] gives a good introduction to both theoretical and practical issues
of risk and trust, including a qualitative analysis of an e-purse example. This project
builds on CarboneÕs trust model [7] which offers a core semantic model of trust based
on intervals to capture both trust and uncertainty in that trust. Earlier Abdul-Rahman
proposed using separate relations for trust and recommendation in distributed systems
[1], more recently Huang and Nicol preset a Þrst-order formalisation that makes the
same distinction [21]. Solhaug and St¿len [42] consider how risk and trust are related
to uncertainties over actual outcomes versus knowledge of outcomes. Compared with
our work, these approaches produce models of trust relationships between high-level
system components (typically treating risk as uncertainty in trust) but do not link those
relations to the systemÕs code.
Logical models of trust. Various different logics have been used to measure trust in
different kinds of systems. Some of the earliest work is Lampson et al.Õs Òspeaks forÓ
and ÒsaysÓ constructs [24], clear precursors to our ÒobeysÓ but for authentication rather
than speciÞcations. Murray [35] models object capability patterns in CSP, and applies
automatic reÞnement checking to analyse various properties in the presence of untrusted
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components. Ries et al. [40] evaluate trust under uncertainty by evaluating Boolean
expressions in terms of real values. Carbone et al. [41] and Aldini [3] model trust using
temporal logic. Primiero and Taddeo [39] have developed a modal type theory that
treats trust as a second-order relation over relations between counterparties. Merro and
Sibilio [29] developed a trust model for a process calculus based on labelled transition
systems. Compared with ours, these approaches use process calculi or other abstract
logical models of systems, rather than engaging directly with the systemÕs code.
VeriÞcation of Object Capability Programs. Drossopoulou and Noble [13, 36] have
analysed MillerÕs Mint and Purse example [30] by expressing it in Joe-E and in Grace
[36], and discussed the six capability policies as proposed in [30]. In [16], they proposed
a complex speciÞcation language, and used it to fully specify the six policies from [30];
uncovering the need for another four policies. More recently, [14] they have shown
how different implementations of the underlying Mint and Purse systems coexist with
different policies. In contrast, this work formalises the informal ideas from [17], pro-
posesFocal, which is untyped and modelled on Grace and JavaScript rather than Java;
a much simpler speciÞcation languageChainmail; theobeyspredicate to model trust;
MayAccessandMayAffect to model risk; a full speciÞcation of theEscrow; and a
Hoare logic for reasoning about risk and trust, applied to the Escrow speciÞcation.

5 Conclusions and Further Work

In this paper we addressed the questions of speciÞcation of risk, trust, and reasoning
about such speciÞcations. To answer these questions, we contributed:

Ð Hypotheticalpredicatesobeys to model trust,MayAccessand MayAffect to
model risk, and their formal semantics.

Ð Open AssertionsandOpen Policieswhose validity must be guaranteed, even when
linked withanyother code.

Ð Formal modelsof Focal andChainmail.
Ð Hoare four-tuplesthat make invariants explicit.
Ð A Hoare logicincorporating code agnostic inference rules.
Ð Formal reasoningto prove key steps of the Escrow Exchange.

In further work we will extend our approach to deal with concurrency, distribution,
exceptions, networking, aliasing, and encapsulation. Finally, we hope to develop auto-
mated reasoning techniques to make these kinds of speciÞcations practically useful.
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1. Introduction
This is the companion appendix to our work “Reasoning
about Risk and Trust in an Open World”. We give here
the full definitions of Focal, Chainmail, our Hoare logic,
prove soundness of our Hoare logic, and then prove that our
escrow exchange implementation establishes mutual trust
while managing risk.

2. Formal Definition of the language Focal
2.1 Modules and Linking
Focal modules map class identifiers to class descriptions,
function identifiers to function descriptions, and predicate
identifiers to predicate descriptions - we require implicitly
for any module M , class identifier c, function identifier f,
and predicate identifier P, that that M (c) 2 ClassDescr

or undefined, that M (f ) 2 FunDescr or undefined, and
M (P ) 2 PredDescr or undefined.

Definition 1 (Modules).

Module = ClassId �! ClassDescr
Specification = ( FunId [ PredId [ SpecId ) �!

(FuncDescr [ PredDescr [ Specification )

We define linking of modules, M ⇤M 0, to be the the union
of their respective mappings, provided that the domains of
the two modules are disjoint:

Definition 2 (Linking and Lookup). Linking of modules M
and MÕis
⇤ : Module⇥Module �! Module

M ⇤MÕ=

!
M ⇤aux MÕ, if dom(M )\dom(MÕ)=;
? otherwise.

(M ⇤aux MÕ)(c) =

!
M(id), if M (id) is defined
MÕ(id) otherwise.

Classes We define the syntax ....

Definition 3 (Classes, Methods, Args). We define the synatx
of modules below.

ClassDescr ::= class ClassId
{ (fld FieldId)⇤ ( methBody )⇤ }

methBody ::= method m ( ParId⇤ )
{ Stmts ; return Arg }

Stmts ::= Stmt | Stmt ; Stmts
Stmt ::= var VarId := Rhs

| VarId := Rhs
| this.FieldId := Rhs
| if Arg then Stmts else Stmts
| skip

Rhs ::= Arg.MethId( Arg⇤ ) | Arg
| new ClassId( Arg⇤ )

Arg ::= Path | true | false | null
Path ::= ParId | VarId | this

| Path. FieldId

Note that Focal supports a limited form of protection:
the syntax supports reading of fields of any object, but re-
stricts each object to being able to modify only its own fields.

Method Lookup We define the method lookup function,
M which returns the corresponding method definition given
a class and a method identifier.

Definition 4 (Lookup). The lookup function
M(M , c ,m) = methodm ( p1, ...pn ) { stms; return a}

iff M (c) = class c{ ...
methodm ( p1, ...pn ) { stms; return a}

...} .
undefined, otherwise.

2.2 Execution of Focal
Runtime state The runtime state � consists of a stack
frame �, and a heap �. A stack frame is a mapping from
receiver (this) to its address, and from the local variables
(VarId ) and parameters (ParId ) to their values. Values are
integers, the booleans true or false, addresses, or null. Ad-
dresses are ranged over by ◆. The heap maps addresses to
objects. Objects are tuples consisting of the class of the ob-
ject, and a mapping from field identifiers onto values.
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(METHCALL _OS)
! a"! ·" = ◆

! ai " ! ·" = vali #i $ { 1..n}
M (M ,�(◆) #1, m) =

methodm( par1, . . . parn ) { stms; return a0}
�

00
= this %&◆, par1 %&val1, . . . parn %&valn

M , �

00 á�, stmts ; �

0 á�0

M , � á�, a.m( a1, . . . an ) ; �

0
, ! a0" ! 0·" 0

(ARG_OS)

M , � á�, a ; �, ! a" ! ·"
(NEW_OS)

◆ is new in�
f1, ...fn are the Þelds deÞned inCId
M , � á�, newC( a1, ...an )
; �[◆%&(C , f1%&!a1" !,# ...fn%&!an "!,# )], ◆

(VARASG-1_OS)
M , � á�, e ; �

0
, val

M , � á�, var v:=e ; �[v %&val] á�0

(VARASG-2_OS)
M , � á�, e ; �

0
, val

M , � á�, v:=e ; �[v %&val] á�0

(FIELDASG_OS)
M , � á�, e ; � á�0

, val
M , � á�, this.f := e ; � á�0

[�(this), f %&val]

(SEQUENCE_OS)
M , �, stmt ; �

00

M , �

00
, stmts ; �

0

M , �, stmt ; stmts ; �

0

(COND-TRUE_OS)
! a"# = true

M , �, stmts1 ; �

0

M , �, if a then stmts1 else stmts2 ; �

0

(COND-FALSE_OS)
! a"# = false

M , �, stmts2 ; �

0

M , �, if a then stmts1 else stmts2 ; �

0

(SKIP_OS)

M , �, skip ; �

Figure 1. Operational Semantics - done

� $ state = frame' heap
� $ frame = StackId(& val
� $ heap = addr (& object
v $ val = { null, true, false} ) addr ) N
object = ClassId' ( FieldId (& val )
◆, ◆

0
, .. $ addr

StackId = { this } ) VarId ) ParId

The Operational Semantics of F ocal We deÞne! a"# , the
interpretation of an argumenta $ Arg in a state� as
follows.

DeÞnition 5 (Interpretation). For a state� = (�,�) we
deÞne

!x"# = �(x) (for x $ StackId)
! true"# = true

! false"# = false

!x.f "# = �(!x"# )(f)

!x.fs.f "# = �(!x.fs"# )(f)

Herefs is a non-empty.-separated list of FieldIds.

Execution uses moduleM , and maps a runtime state�
and statementsstmts(respectively a right hand siderhs)
onto a new state�0 (respectively a new heap�0 and a value).
We therefore do not give execution rules for things like null-
pointer-exception, or stuck execution. This allows us to keep

the system simple; it will be easy to extend the semantics to
a fully-ßedged language.

DeÞnition 6. Execution ofF ocal statements and expres-
sions is deÞned in Þgure 2.2, and has the following shape:
; : Module' state' Stmts (& state
; : Module' state' Rhs (& heap' val

Arising and Reachable Configurations Policies need to
be satisÞed in all conÞgurations which may arise during exe-
cution of some program. This leads us the concept ofarising
conÞguration. Arising conÞgurations allow us to restrict the
set of conÞgurations we need to consider. For example, in a
program where a class does not export visibility to a Þeld,
the constructor initialises the Þeld to say0, and all method
calls increment that Þeld, the arising conÞgurations will only
consider states where the Þeld is positive.

A conÞguration is reachable from another conÞguration,
if the former may be required for the evaluation of the latter
after any number of steps.

Reach : Module ' state ' Stmts
(& P (state ' Stmts)

In Þgure 2 we deÞne the functionReach by cases on the
structure of the expression, and depending on the execu-
tion of the statement. The setReach(M ,�, stmts) collects
all conÞgurations reachable during execution of�, stmts.
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Note that the function Reach(M , !, stmts ) is defined, even
when the execution should diverge. This is important, be-
cause it allows us to give meaning to capability policies with-
out requiring termination.

We then define Arising(M ) as the set of runtime con-
figurations which may be reached during execution of some
initial context (! 0,stmts 0). A context is initial if its heap
contains only objects of class Object .

DeÞnition 7(Arising and Initial configurations). We deÞne
the mappings

Init : Module �! P(state ⇥ Stmt)
Arising : Module �! P(state ⇥ Stmts)

as follows:
Init (M ) = { ( ! 0, new c.m( new cÕ) ) | c, cÕ 2 dom(M )

where! 0 = (( ", null ), #0),
and#0(") = ( Object , ;) }

Arising(M ) =
!

(!, stmts )!I nit (M ) Reach(M , !, stmts )

Initial configuration should be as “minimal” as possible,
We therefore construct a heap which has only one object,
and execute a method call on a newly created object, with
another newly created object as argument.

3. The SpeciÞcation Language Chainmail
Our specifications and policies are fundamentally two-state
assertions. To express the state in which an expression is
evaluated, we annotate it with a t-subscript. For exam-
ple, given ! and ! " where ! (x)=4, and ! "(x)=3, we have
M , !, ! " |= xpre � xpost = 1 .

Expressions and AssertionsWe first define expressions,
Expr, and assertions A, which depend on one stateonly.
We allow the use of mathematical operators, like + and �,
and we use the identifier f to indicate functions whose value
depends on the state (eg the function length of a list). We
use the identifier sR to indicate predicates whose validity
depends on the state (eg the predicate Acyclic for a list).

The difference between expressions and arguments is that
expressions may express ghost information, which is not
stored explicitly in the state ! but can be deduced from it
— e.g. the length of a list that is not stored with the list.

DeÞnition 8(Expressions).

Expr ::= Arg | Val | Expr+ Expr | ...
| f(Expr#)
| if Expr then ExprelseExpr

funDescr ::= function f( ParId# ) { Expr }

We now define the values of such expressions, and the
validity of one-state assertions as follows:

DeÞnition 9 (Interpretations). We deÞne the interpretation
of expressions, b·c : Expr ⇥Module ⇥ state ! Value

using the notationb·cM ,! :

¥ bvalcM ,! = val, for all valuesval 2 Val .

¥ bacM ,! = bac! , for all argumentsa 2 Arg .
¥ be1 + e2 cM ,! = be1 cM ,! + be2 cM ,! .
¥ bf (e1 , ...en )cM ,! = bExpr [e1 / p1 , ...en / pn ]cM ,!

whereM (f ) = function f ( p1 ...pn ) { Expr } ,
undeÞned, otherwise.

¥ bif e0 then e1 else e2 cM ,!

=b e1 cM ,! , if b e0 cM ,! =true,
=b e2 cM ,! , if b e0 cM ,! =false.
and undeÞned, otherwise.

One-state assertionsWe now define a language of asser-
tions which depend on one state. We introduce three specific
predicates: MayAffect and MayAccesswhich we use to
model risk, the assertion Expr :ClassId which expresses
class membership, and the assertion Expr obeysSpecId .
The two former predicates are hypothetical, in that they
talk about the potential effect of execution of code, or of
the existence of paths to connect two objects. In particular,
the MayAffectpredicate ascertains whether its first param-
eter may execute code which affects the second one, while
MayAccesspredicates ascertains whether its first parameter
has anypath to the second one.

DeÞnition 10(One-state Assertions).

A ::= Expr | R(Expr#)
| Expr� Expr | A^ A | ...
| 9x.A | 8x.A | ...
| Expr:ClassId
| MayAffect( Expr,Expr)
| MayAccess( Expr,Expr)
| Expr obeysSpcId

PredDescr ::= predicateR( ParId# ) { A }

Two state assertions Two-state assertions allow us to com-
pare properties of two different states, and thus say, e.g. that
p.balance post = p.balance pre + 10 . To differentiate be-
tween the two states we use the subscripts pre and post.

DeÞnition 11(Two-state Assertions).

t ::= pre | post | $
B ::= At

| Exprt � Exprt | ...
| New(Expr )
| B^ B | ...
| 9x.B | 8x.B .

Given the syntax from above, we can express assertions like
8p.p :pre Purse .

p.bank = pre RBS! p.balance pre = p.balance post ,
to require that the balance of any Purse belonging to
RBS is immutable across the to states. Notice that for leg-
ibility, for infix predicates (such as = or :) we annotate the
predicate application rather than the assertion, e.g.we write
p.bank =pre RBSto stand for (p.bank =RBS)pre .
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Reach(M , !, v:= new c( a1, ...an ) ) = { (v:= new c( a1, ...an ) , ! ), (skip , ! 0)}
whereM , !, v:= new c( a1, ...an ) ! ! 0

Reach(M , !, stmt ; stmts ) = Reach(M , !, stmt ) ! R each(M , ! 0, stmts )
whereM , !, stmt ! ! 0

Reach(M , !, v:= a) = { (v:= a, ! ), (skip , ! 0)}
whereM , !, v:= a ! ! 0

Reach(M , !, v:= a.m( a1, ...an ) ) = { (v:= a.m( a1, ...an ) , ! ), (skip , ! 000) } ! R each(M , ! 0, stmts )
where" = ! " 1, and! 0 = ( this #$ %a1&! , x1 #$ %an &! ..xn #$ %an &! ), " )
andM (M , ! (! a1" ! ) #1, m) = ...( stmts ; return a ) and
M , ! 0, stmts ! ! 00 and! 000 = ( ! " 1 [v #$ %a&! !! ], ! 00 " 2)

Reach(M , !, skip ) = { (skip , ! ) }
Reach(M , !, if a then stmts 1 else stmts 2 ) = { (if a then stmts 1 else stmts 2, ! ), } ! R each(M , !, stmtsÓ )

wherestmtsÓ = stmts 1 if %a&! = true , otherwisestmtsÓ = stmts 2

Figure 2. Reachable ConÞgurations

Policies are expressed in terms of one-state assertionsA,
A 0, etc. and two state assertionsB , B 00 etc.

Policies can have one of the three following forms: 1) in-
variants of the formA, which require thatA holds at all vis-
ible states of a program; or 2)A { code } B , which require
that execution ofcode in any state which satisÞesA will
lead to a state which satisÞesB wrt the original state; or 3)
A { any_code } B which, similar to two state invariants, re-
quires that execution ofanycode in a state which satisÞesA
will lead to a state which satisÞesB .

DeÞnition 12(Policies).
Policy ::= A | A { code } B | A { any_code } B
PolSpec ::= spec SpcId{ P olicy⇤ }

.

Validity of one-state, two-state assertions, and policies
We Þrst deÞned validity of one-state assertions:

Let ! = ( #, " ) be a state. Then write! [v#$$] as short-
hand for(#[v#$$], " ).

DeÞnition 13(Validity of one-state assertions ÐM ayAffect
andM ayAccess). We deÞne the validity an assertion A:

|= ' Module ( state ( Assertion
using the notationM , ! |= A:

¥ M , ! |= e iff %e&M ,! = true .
¥ M , ! |= R(e1 , ...en ) iff

M , ! |= R[e1 / p1 , ...en / pn ]
whereM (P) = predicate P ( p1 ...pn ) { A } ,
undeÞned, otherwise.

¥ M , ! |= e1 ) e2 iff %e1 &M ,! ) %e2 &M ,! .
¥ M , ! |= A1 * A2 iff M , ! |= A1 andM , ! |= A2 .
¥ M , ! |= +x.A iff for some address$ and some fresh

variablez , VarId , we haveM , ! [z #$ $] |= A[z/ x]
¥ M , ! |= - x.A iff for all addresses$, dom(! ), and fresh

variablez, we haveM , ! [z #$ $] |= A[z/ x].
¥ M , ! |= e:C iff ! (%e&M ,! ) " 1= C.

¥ M , ! |= M ayAffect( e, e0) iff there exists methodm,
argumentsøa, state! 0, identiÞerz, such thatM , ! [z #$
%e&M ,! ], z.m(øa) ! " 0, and%e0&M ,! .= %e0&M ,! #1 ," ! .

¥ M , ! |= M ayAccess(e, eÕ) iff there exist Þeldsf 1,...
f n , such that%z.f 1...f n &M ,! [z 7!becM ,! ] = %eÕ&M ,! .

¥ M , ! |= e obeysPolSpecId iff
- (!, stmts ) ,A rising(M ). - i,{ 1..n} .
- ! 0, stmts 0. (! 0, stmts 0) ,R each(M, !, stmts ).

M, ! 0[z #$ %e&! ] |= Policyi [z/ this ]
wherez is a fresh variable in! 0, and where we assume
that PolSpecId was deÞned as
specification PolSpecId{ Policy1, ...Policyn } ,

We now deÞne validity of two state assertions, ...

DeÞnition 14(Validity of Two-state assertions). We deÞne
the judgment

|= ' Module ( state ( state ( T woStateAssertion
using the notationM , !, ! 0 |= B as follows

¥ M , !, ! 0 |= At iff M , ! 00 |= A,
where! 00 = ! if t= pre, and! 00 = ! 0 otherwise.

¥ M , !, ! 0 |= et ) e0
tÕ, iff %e&M ,! 1 ) %e0&M ,! 2 ,

where! 1 = ! if t= pre, and! 1 = ! 0 otherwise,
and! 2 = ! if t0=pre, and! 2 = ! 0 otherwise.

¥ M , !, ! 0 |= New(e) iff %e&M ,! ! , dom(! 0) \ dom(! )
¥ M , !, ! 0 |= B1 * B2 iff

M , !, ! 0 |= B1 andM , !, ! 0 |= B2.
¥ M , !, ! 0 |= +x.B iff for some address$and fresh vari-

ablez, we haveM , ! [z #$ $], ! 0[z #$ $] |= B [z/ x].
¥ M , !, ! 0 |= - x.B iff M , ! [z #$ $], ! 0[z #$ $] |= B [z/ x]

holds for all addresses$, dom(! ), and fresh variablez.

For example, for states! 1, ! 2 where%x.balance &! 1 = 4
and%x.balance &! 2 = 14, we have
M , ! 1, ! 2 |= x.balance post = x.balance pre + 10.

We now deÞne adherence to policy,M , ! |= pol Policy,
which ensures that the requirements ofPolicyare satisÞed in
any context arising fromM .
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DeÞnition 15(Adherence to Policies).
¥ M , ! |= pol A iff M , ! |= A
¥ M , ! |= pol A {code }B iff

( M , ! |= A ^ M , !, stmts ; ! !

�! M , !, ! ! |= B )
¥ M , ! |= A {any_code } B iff

8code .(!, code ) 2 Arising(M ) ^ M , ! |= A
^ M , !, stmts ; ! !

�! M , !, ! ! |= B )

In order to model open systems, require that after linking
any module with the module at hand, the policy will be
satisÞed. As stated in [3], "A programmer should be able to
prove that his programs have various properties and do not
malfunction, solely on the basis of what he can see from his
private bailiwick." For example, to express thatM 5 satisÞes
EscrowSpec we need to allow any possible implementation
of Purse as well as any other code to be linked, and still
ensure that the Escrow policies are satisÞed.

DeÞnition 16(Classes adhering to SpeciÞcations).

¥ M |= pol ClassIdobeysPolSpecId iff
8M !, !. (!, _) 2 Arising(M ⇤ M !).
M, ! |= pol o : ClassId ! oobeysPolSpecId

4. Hoare Logic
We deÞne the Hoare Logic that allows us to prove adherence
to policies. In order to reßect that the code to be veriÞed is
executed in an open system, and that it calls code whose
speciÞcation and trustworthiness is unknown to the code
being veriÞed, we augment the Hoare triples, so that not only
do they guarantee some property to holdafter execution of
the code, but also guarantee that some property is preserved
duringexecution of the code.

A Hoare tuple in our system has either the format
M ` A { stms } A! 1 B ,

or the format
M ` A { stms } B ! 1 B ,

The former promises that execution ofstms in any state
which satisÞes A will lead to a state which satisÞes AÕ. The
latter promises that execution ofstms in any state which
satisÞes A will lead to a state where the relation of the old
and new state is described by B. Both the former and latter
tuples also promise that the relation between the initial state,
and any of the the intermediate states reached by execution
of stms will be described by B.

The execution ofstmts may call methods deÞned in
M , and the predicates appearing in A, AÕ, and B, may use
predicates as deÞned inM . When the moduleM is implicit
from the context we use the shorthand` A { stms } A! 1

B .
As is usual in many Hoare logics [1] we introducelogical

variables into our assertions. We assume that these have
the form var, varÕ, and that they come from a separate

domain. We also assume that there exists a functionLvars,
which returns all the logical variables within an assertion.
For exampleLvars(p1.balance = var) = { var }. 1

DeÞnition 17(Validity of Hoare Tuples).

¥ M |= A { stms } A! 1 B iff
Lvars(A) = Lvars(A!) = { var } ^ 8M !, !, val.

(!, _) 2 Arising(M ⇤ M !)
^ M ⇤ M !, ! [var 7! val] |= A
^ M ⇤M !, !, stms ; ! !

�!
M ⇤M !, ! ! [var 7! val] |= A!

^
8! !! 2Reach(M, !, stmts ). M ⇤M !, !, ! !! |= B

¥ M |= A { stms } B ! 1 B iff
Lvars(A) = Lvars(A!) = { var } ^ 8M !, !, val.

(!, _) 2 Arising(M ⇤ M !)
^ M ⇤ M !, ! [var 7! val] |= A
^ M ⇤M !, !, stms ; ! !

�!
M ⇤M !, ! [var 7! val], ! ! [var 7! val] |= B !

^
8! !! 2Reach(M, !, stmts ). M ⇤M !, !, ! !! |= B

Note that the deÞnition from above does not support the
use of logical variables in the invariant part of the tuple,B .
Even though it would have been possible to accommodate
for this in our formal model, it would slightly complicate the
expositions, and so far we have not found a need to do that.

4.1 Hoare Rules

We deÞne the Hoare rules in Þgure 3 for the language con-
structs, while in Þgure 4 we give the rules for framing, the
rules for consequence, and rules about invariants preserved
during execution of a statement.2

We Þrst consider the rules from Þgure 3: The rules
(VARASG) and (FIELDASG) are not surpising. The anno-
tations _pre and _post explain the use ofapre , and allow us
to talk in the postcondition about values in the pre-state. For
example, we would obtain
true

{ this.f=this.f+3 }
this.f = this.f pre + 3
1

true

.

The rules (COND-1) and (COND-2) describe conditional
statements, and are standard.

The rule (METH-CALL -1) describes method call.3

1 Make sure we have said earlier thatval stands for a value.Just noticed that
I sometimes usesv for variables, and some times for values. Arghh
2 Notice that we have no rule for object creation; these would like rules for
method calls; while they do not pose special challenges, they would increase
the size of our system and we leave this to further work.
3 We have no invariant part in the spec of a method, but it would not be
difÞcult to extend the system to support this.
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(VARASG)

! true { var v:= a } v = apre ! true
! true { v:= a } v = apre ! true

(FIELDASG)

! true { this .f := a } this .f = apre ! true

(COND-1)
A " M cond
! A { stmts 1 } B ! B !

! A { if cond then stmts 1 else stmts 2 } B ! B !

(COND-2)
A " M Âcond
! A { stmts 2 } B ! B !

! A { if cond then stmts 1 else stmts 2 } B ! B !

(SKIP)

! A { skip } A ! true

(METH-CALL -1)
M (S) = spec S { P olicy, A { this.m(par) } B, Policy! }
! x obeysS # A[x/ this , y/ par ] { v := x.m(y) } B [x/ this , y/ par , v/ res ] ! true

(METH-CALL -2)
B $ %z :pre Object . M ayAccess(v, z) " ( M ayAccesspre (x, z) & M ayAccesspre (y, z) )
B ! $ %z, u :pre Object . ( M ayAccess(u, z) "

(M ayAccesspre (u, z) &
( (M ayAccesspre (x, z) & M ayAccesspre (y, z)) #

(M ayAccesspre (x, u) & M ayAccesspre (y, u)) ) ) )
! true { v := x.m(y) } B ! B !

(FRAME-METHCALL )
! A { x.m(y) } true ! %z.( M ayAffect(z, A!) " B !(z) ) #

%z.( (M ayAccesspre (x, z) & M ayAccesspre (y, z) & New(z) ) " Â B !(z) )
! A # A! { x.m(y) } A! ! true

(SEQUENCE)
! A { stmts 1 } B1 ! B ! ! A2 { stmts 2 } B2 ! B ! A, B 1 " M true , A2 B1, B2 " M B
! A { stmts 1; stmts 2 } B ! B !

Figure 3. Hoare Logic Ð Basic rules of the language Ð we assume that the moduleM is globally given

On the other hand, rule (METH-CALL -2) is unusual in
a Hoare logic setting; it expresses that Òonly connectiv-
ity begets connectivityÓ . The terms was coined by Mark
Miller and is used widely in the capabilities literature. To
our knowledge, this property has not been expressed in a
Hoare logic. The reason, is, we believe, that Hoare logics so
far have been developed with the closed world assumption,
in the sense that all methods (or functions) called come from
code which has a speciÞcation, and which has been veriÞed.

The rule (FRAME-METHCALL ) is also unusual; note that
its precondition istrue. This means that we make no as-
sumptions about the receiver of the method call; this allows
us to reason in anopensetting. Even though we do not know
what the behaviour methodm will be, we still have some
conditions which can guarantee that AÕ will be preserved.
These conditions are that anything that was accessible from

the receiverx or argument ofz at the time of the method
call, or anything that is newly created during execution of
the method body, does not satisfy the prerequisites neces-
sary to affect AÕ.4

The last rule in Þgure 3 is (SEQUENCE). It requires that
the precondition and the postcondition of the Þrst statements,
i.e.A andB1, imply the precondition of the second state-
ments, ieA2, and that the combined effects described by
the two-state assertion in the postconditions ofstmts 1 and
stmts 2, B1 followed byB2, imply the postcondition of the
sequence,i.e.B .

The standard entailment,i.e.A " M A!, guarantees that
any state which satisÞesA also satisÞesA!. We extend the
notion to cater for two state assertions, and have three new

4 Notes that! ! ! R each(M, !, stmts ) is a shorthand for! ! .(! ! , _! ) !
R each(M, !, stmts ).
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(FRAME-GENERAL)
! A { stmts } B ! B !

A " M stmts # A! A " M stmts ## A!!

! A # A! { stmts } B # A! ! B ! # A!!

(CONJ)
! A1 { stmts } B1 ! B3

! A2 { stmts } B2 ! B4

! A1 # A2 { stmts } B1 # B2 ! B3 # B4

(CONS-1)
! A { stmts } B ! B ! A! " M A
B " M B !! B ! " M B !!!

! A! { stmts } B !! # B ! ! B !!!

(CONS-2)
! A { stmts } B ! B !!

A!, B ! " M A, true
! A! { stmts } B ! " B ! B !!

(CONS-3)
! A { stmts } B ! B !

A, B " M true , A!

! A { stmts } A! ! B !

(CONS-4)
! A { stmts } A! ! B !

A, A ! " M B
! A { stmts } B ! B !

(CODE-INVAR -1)
M (S) $ spec S { P olicy, P, P olicy! }
! true { stmts } true ! %x.( x obeysS " P[this / x] )

(CODE-INVAR -2)

! eobeysS { stmts } true ! epre obeysS

Figure 4. Hoare Logic Ð we assume that the moduleM is globally given

forms of entailment, described in DeÞnition 18. The require-
mentA, B 1 " M true , A2 guarantees that for any pair of
states if the former states satisÞesA and the two together sat-
isfy B1, then the second state will also satisfyA2, c.f. DeÞ-
nition 18.3. The requirementB1, B2 " M B guarantees for
any three states, if the Þrst two together satisfyB1, and the
second and third together satisfyB2, then the Þrst and third
will satisfy B , c.f. DeÞnition 18.5. For example, with 18.3
we havex = 5 , xpost = x + 2 " M true , x = 7 , while with
18.5 we havexpost = x+4 , xpost = x+2 " M xpost = x+6
for any moduleM .

DeÞnition 18(Entailment).

1. A " M A! iff
%! . M , ! |= A " M , ! |= A!

2. B " M B ! iff
%!, ! ! . M , !, ! ! |= B " M , !, ! ! |= B !

3. A, B " M A!, A!! iff
%!, ! ! . ! |= A # !, ! ! |= B &" ! |= A! # ! ! |= A!!

4. A, A ! " M B iff
%!, ! ! . ! |= A # ! ! |= A! &" !, ! ! |= B

5. B, B ! " M B !! iff
%!, ! ! , ! !! . !, ! ! |= B # ! !, ! !! |= B ! &" !, ! !! |= B !!

We now turn our attention to the structural rules from
Þgure 4.

Rule (FRAME-GENERAL) allows us to frame onto a tuple
any assertion that has not been affected by the code. . For
this, we need two notions of some code being disjoint from
an assertion:

DeÞnition 19(Disjointness).

¥ M , ! |= stms ## A iff
M , ! |= A # %! ! ' R each(M , stmts , ! ). M , ! ! |= A.

¥ M , ! |= stms # A iff
M , ! |= A # M , !, stms " ! ! " M , ! ! |= A.

For examplex=7 # x:=x+1; x:=x-1 holds for all states
and modules, butx=7 ## x:=x+1; x:=x-1 never holds. In
general, framing is an undecidable problem, but we can
prove some very basic properties, eg that assignment to a
variable does not affect all other variables, nor other paths.
Note, that in order to express this property we are making
use of logical variables.

Lemma 1. For all modulesM , and states! ,
¥ If x andy are textually different variables, then

M , ! |= x=a ## y := aÕ.
¥ If x is not a preÞx of the pathp, then

M , ! |= p.f=a ## x := aÕ.
¥ If M , ! |= stms ## A thenM , ! |= stms # A.

The rule (CONJ) allows us to combine different Hoare
tuples for the same code, and follows standard Hoare logics.

Interestingly, our system hasfour rules of consequence.
The Þst rule, (CONS-1), is largely standard, as it allows us to
strengthen the precondition A, and weaken the postcondition
B, and invariantB !. A novelty of this rule, however, is that
it allows the invariant to be conjoined to the postcondition;
this is sound, because the invariant is guaranteed to hold
throughout execution of the code, and thus also after it.

For (CONS-1) we use the entailmentA " M A!, which
guarantees that any state which satisÞedA also satisÞesA!,
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and that of the formB ! M B ! which guarantees that any
pair of states which together satisfyB also satisfyB !. This
is described in DeÞnition 18.

The next rule, (CONS-2), is unusual, in that it allows us
to weakenthe precondition, while adding a hypothesisB ! to
the postcondition, such that the original postcondition,B , is
only guaranteed ifB ! holds. The rule is sound, because we
also require that the new preconditionA! together with the
new postconditionB ! guarantee that the original precondi-
tion holds in the pre-state. The judgmentA, B ! M A!, A!!

is deÞned in in DeÞnition 18. For example, we can use this
rule to take
p1 obeysPurse

{ p2:=p1.sprout }
p2 obeysPurse
!
true

and deduce that
true

{ p2:=p1.sprout }
p1pre obeysPurse ! p2 obeysP urse
!
true

.

The next two rules, (CONS-3) and (CONS-4), allow us to
swap between tuples where the postcondition is a one-state
assertion,i.e." A { stms } A! ! B ! and that where the
postcondtion is a one state assertion,i.e." A { stms } B ! B !.

The following lemma is an example entailment.

Lemma 2. For all modulesM :
M ayAccess(x, y)#M ayAccess(y, z) ! M M ayAccess(x, z).

The two last rules in 4 are concerned with adherence to
speciÞcation.

The rule (CODE-INVAR-1) expresses that throughout ex-
ecution of any code, in all intermediate states, for any vari-
ablex for which we know that itobeysa speciÞcationS, we
know that it satisÞes any ofSÕs stated policies.

The rule (CODE-INVAR-2) guarantees that any terme
which has been shown to be pointing to an object which
obeysa speciÞcationS will continue satisfying the speciÞ-
cation throughout execution of anystms .

4.2 Soundness

We Þrst demonstrate that judgments made in the context of
a module are preserved when we link a larger module. In
lemma 3, we state that entailment is preserved by linking:

Lemma 3.

¥ A ! M A! implies thatA ! M "M ! A!.
¥ B ! M B ! implies thatB ! M "M ! B !

¥ A, A ! ! M B implies thatA, A ! ! M "M ! B
¥ B, B ! ! M B !! implies thatB, B ! ! M "M ! B !!

In lemma 1 we state that derivability and validity of Hoare
tuples is preserved for larger modules

Theorem 1 (Linking preserves derivations and validity).
For all modulesM , M !.

¥ If M " A { stms } A! ! B , then
M $M ! " A { stms } A! ! B .

¥ If M |= A { stms } A! ! B , then
M $M ! |= A { stms } A! ! B

We now deÞne what it means for a method body, and a
class deÞnition to adhere to its speciÞcation

We say that a methodm deÞned a classC adheres to is
speciÞcation,

M " C, m
if we able to show that the body ofmwhen executed in a state
that satisÞes A, the difference between the initial and Þnal
state is described by B, and will preserve BÕ, where A and
BÕ and B are the methodÕs pre, postcondition, and invariant.
Moreover, we say that a class adheres to its speciÞcation

M " C
of all its methods adhere to their speciÞcation. Finally, a
module adheres to its speciÞcation,

M " M
if all the classes inM adhere to their speciÞcations.

DeÞnition 20(Proving codeÕs adherence to speciÞcation).

¥ M " C, m iff
for all method identiÞersm, and for all A and B ! such
thatSpec(M , C) = S and
M (S) = spec S { Policy, A { this.m(par) } B, Policy! }
we can prove that
M " A # this obeysS { stmts } B [a/ res ] ! true
and where the method body form Cis deÞned inM as
method m( par ) { stmts ; return a } .

¥ M " C iff M " C, m
for all methods fromC

¥ M " M iff
M " C for all classesC from M

Below we are deÞning and proving the soundness of our
Hoare logic. Note that we do not require thatM " M , be-
cause we do not model object creation. If we had object cre-
ation in our system, we would have needed that requirement,
and the proof of soundness would have required slightly
more complex proof techniques such as a generation lemma,
or double induction.

Theorem 2 (Soundness of the Hoare Logic). For all mod-
ulesM , codestms and assertionsA, A! andB andB ! ,

¥ If M " A { stms } A! ! B
thenM |= A { stms } A! ! B .

¥ If M " A { stms } B ! ! B
thenM |= A { stms } B ! ! B .

Proof. Fix the moduleM . Then, the proof proceeds by in-
duction on the judgementM " _ { _} _ ! _, which is in-
ductively characterised by the rules of Figure 3 and Figure 4.
We have one case to consider, for each of the rules.
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Case(VARASG), (FIELDASG), (COND-1) and (COND-2) all
follow trivially from the operational semantics ofF ocal;
the latter two cases also require application of the induc-
tion hypothesis.

Case(METH-CALL -1) follows from the deÞnition of Hoare
tuple validity (DeÞnition 17) and that of theobeyspredicate
(see DeÞnition 13).

Case(METH-CALL -2) expresses the basic axiom of object-
capability systems that Òonly connectivity begets connec-
tivityÓ [2], and follows from the operational semantics of
F ocaland the deÞnitions of validity for theM ayAccess
predicate (see DeÞnition 13).

Case(FRAME-METHCALL ) Is similar to (METH-CALL -2)
in that it expresses a basic axiom of object-capability lan-
guages, namely that in order to cause some visible effect,
one must have access to an object able to perform the
effect. Coupled with Òonly connectivity begets connec-
tivityÓ, this implies that a method can cause some effect
only if the caller has (transitive) access to some object
able to cause the effect (including perhaps the callee).

Case(SEQUENCE) follows from the deÞnition of
Reach(M, !, code 1; code 2) and the deÞnition of va-
lidity of Hoare tuples (DeÞnition 17).

Case(FRAME-GENERAL) Follows by the deÞnition of#
and ## .

Case(CONS-1) follows from the deÞnition of entailment
(DeÞnition 18) and the fact that
(!, stms ) ! R each(M, !, stms ).

Case(CONS-2) follows because!, ! ! |= Q! " Q if and
only iff !, ! ! |= Q assuming!, ! ! |= Q!.

Case(CONS-3) and (CONS-4) follow straightforwardly from
the deÞnition of entailment and Hoare tuple validity.

Case(CODE-INVAR -1) follows because the deÞnition of
policy satisfaction for one-state-assertionsA requires that
A holds for all internally-reachable states! ! via Reach.

Case(CODE-INVAR -2) follows straightforwardly from the
deÞnition of Hoare tuple validity and 2-state-assertion
validity.

!

5. Proof of Escrow:deal

We now outline the most salient steps from the proof of the
Escrow . Note that out formally deÞned language does not
support returning from the inside of a method - we did this to
simplify the Hoare rules. Therefore, in Figure 5 we re-write
the mothoddeal so that it obeys this syntactic restriction.

5.1 Preliminaries

We Þrst create some admissible rules, useful for our reason-
ing.

Firstly, because logical variables cannot be assigned to,
we have that# var { stmts } true ! var = varpre for
any stmts ; therefore, the following rules are admissible

for any logical variablevar, and speciÞcationS:
(CODE-INAVR -3)

# var obeysS { code } true ! var obeysS

Similarly, through application of (FRAME-GENERAL),
if z $= x, we get# z = var { x:=rhs } z = var ! true ,
which also gives that# true { x:=rhs } z = zpre ! true .
Then, by (CODE-INVAR-2) and (CONS-1) we obtain that

(OBEYS-INVAR)
z $= x
# z obeysS { x:=rhs } true ! z obeysS

5.2 First Step

The pre and postconditions for the Þrst line from the code, ie
for line 4 from Figure 5 are described in Þgure 6. Drawing on
the Pol_sprout policy of theValidPurse speciÞcation,
this step is obtained as follows:

Firstly, by application of (OBEYS-IVAR) and (CONS-4)
we obtain
(0)
true

{ escrowMoney := sellerMoney .sprout }
sellerMoney pre obeysValidPurse "

sellerMoney obeysValidPurse
!
true

.
Then, from the speciÞcation ofsprout in ValidPurse , and
the rule (METH-CALL -1) we obtain that
(1)
sellerMoney obeysValidPurse

{ escrowMoney := sellerMoney .sprout }
escrowMoney obeysValidPurse %
CanTrade(escrowMoney , sellerMoney ) %
&p :pre GoodPrs .p.balance = p.balance pre

!
true

Then,

from (1), and application of (CONS-2), we obtain
(2)
true

{ escrowMoney := sellerMoney .sprout }
sellerMoney pre obeysValidPurse "

( escrowMoney obeysValidPurse %
CanTrade(escrowMoney , sellerMoney ) %
&p ! pre GoodPrs . p.balance = p.balance pre )

!
true

Also, by application of (CODE-INVAR-1), and the speciÞca-
tion of ValidPurse , we have that
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1 method deal ( )
2 {
3 // setup and validate Money purses
4 escrowMoney := sellerMoney . sprout
5 res := escrowMoney . deposit (0, sellerMoney )
6 if res then {
7 res := buyerMoney . deposit (0, escrowMoney )
8 if res then {
9 res := escrowMoney . deposit (0, buyerMoney )

10 if res then {
11 // set up and validate Goods purses
12 escrowGoods := buyerGoods . sprout
13 res := escrowGoods . deposit (0, buyerGoods )
14 if res then {
15 res := sellerGoods . deposit (0, escrowGoods )
16 if res then {
17 res := escrowGoods . deposit (0, sellerGoods )
18 if res then {
19 // start the actual exchange
20 res := escrowMoney . deposit ( price , buyerMoney )
21 if res then {
22 res := escrowGoods . deposit ( amt , sellerGoods )
23 if res then {
24 // transfer from the two escrows to two accounts
25 sellerMoney . deposit ( price , escrowMoney )
26 buyerGoods . deposit ( amt , escrowGoods )
27 } else {
28 // undo the transaction
29 buyerMoney . deposit ( price , escrowMoney )
30 }
31 } else skip
32 } else skip
33 } else skip
34 } else skip
35 } else skip
36 } else skip
37 }
38 return res
39 }

Figure 5. Reviseddeal method expressed withoutreturn statements

1 true
2 { var escrowMoney := sellerMoney . sprout }
3 sellerMoney pre obeysValidPurse !" ( escrowMoney obeysValidPurse #
4 CanT rade (escrowMoney , sellerMoney ) #
5 escrowMoney .balance = 0 #
6 $p %pre GoodPrs .p.balance pre = p.balance #
7 sellerMoney obeysValidPurse ) #
8 $p :pre GoodPrs .( p.balance pre = p.balance & M ayA ccesspre (sellerMoney , p) ) #
9 $z :pre Object . ( M ayA ccess(escrowMoney , z) !" M ayA ccesspre (sellerMoney , z) ) #

10 $z, y :pre Object . ( M ayA ccess( z, y ) !"
11 ( M ayA ccesspre ( z, y ) & M ayA ccesspre ( sellerMoney , y ) # M ayA ccesspre ( sellerMoney , z ) )
12 !
13 true
14

Figure 6. Hoare tuple for Þrst step indeal

(3)
true

{ escrowMoney := sellerMoney .sprout }
true
!
! p " pre GoodPrs , o : Object .

( M ayAffect(o, p.balance ) # M ayAccess(o, p) )

By application of (METH-CALL -2) and (FRAME-METH-CALL )
and (3) we obtain
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(4)
true

{ escrowMoney := sellerMoney .sprout }
true
!
! p " pre GoodPrs

( p.balance = p.balance pre #
M ayAccesspre (sellerMoney , o) )

Finally, by application of (METH-CALL -2) we obtain
(5)
true

{ escrowMoney := sellerMoney .sprout }
true
!
! z, y :pre Object . ( M ayAccess( z, y ) $%

( M ayAccesspre ( z, y ) #
M ayAccesspre ( sellerMoney , y )&
M ayAccesspre ( sellerMoney , z ) )

By application of (CONS-1), and (CONJ) on (0), (2), (4),
and (5), we obtain the pre-postconditions from Figure 5.

5.3 Second Step

The pre and postconditions for the second step are described
in Þgure 7. The main differences between Þgures 6 and
7 are a reßection of the differences between the policies
Pol_sprout and Pol_deposit_1 and Pol_deposit_2
in the ValidPurse speciÞcation. Functionally,deposit
may succeed or fail, indictated by its return valueres , while
sprout always succeeds;deposit may change the bal-
ances of participant purses, whilesprout may not.

Crucially for us, the trust essentially the same in both
cases:
src obeyspre ValidPurse ! CanTrade ( this , src ) pre

and the risk is very similar Ñ slightly more complex for
deposit which may modify the two purses:
" p.( p obeyspre ValidPurse ! p /# { this , src } $

p. balance =p. balance pre ) !

but otherwise may not increase risk:
" o: pre Object . " p obeyspre ValidPurse . M ayA ccess( o, p) $

M ayA ccesspre ( o, p) )

Thus, the reasoning for this step can be justiÞed in similar
ways to those that from Þgure 6.

5.4 Step 1 and Step 2 Establish Mutual Trust

When we combine step 1 and step 2 we obtain the Hoare
tuple from Þgure 8. Here we make use of the results from Þg-
ure 6 and Þgure 7, and combine them through the (SEQUENCE)
rule. For example, we use our invariants entailment$% M ,
whereby for any moduleM :
! z :pre Object . ( M ayAccess(escrowMoney , z) %

M ayAccesspre (sellerMoney , z) ) ,
! z :pre Object . ( M ayAccess(sellerMoney , z) %

M ayAccesspre (escrowMoney , z) ) ,
$% M

true,
! z :pre Object . ( M ayAccess(escrowMoney , z) %

M ayAccesspre (sellerMoney , z) ) .

These two steps combined prove that we have now es-
tablished mutual trust between these two purses. This is ex-
pressed in line 4 of Þgure 8:
res %$

sellerMoney pre obeysValidPurse
&$ escrowMoney obeysValidPurse

The bulk of the proof proceeds similarly, with lines 6-18 of
Þgure 5 requiring the same reasoning to establish the remain-
ing mutual trust relationships, Þrst by including the remain-
ing money purse, and then between all the goods purses.

Finally lines 20-30 complete the escrow exchange by
exchanging money and goods. The core reasoning here is
completely straightforward, as trust is already established
between all concerned purses Ñ although of course we also
have to handle the cases where trust is not established, on
paths where adeposit call fails. We have to continue to
reason about the risk, but since onlydeposit andsprout
calls are involved, this reasoning is no different to that of the
Þrst and second step.
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1 true
2 { res =escrowMoney . deposit (0, sellerMoney ) }
3 escrowMoney pre obeysValidPurse !" (#p $ pre GoodPrs .p.balance pre = p.balance )
4 escrowMoney pre obeysValidPurse %res " ( sellerMoney obeysValidPurse %
5 #p :pre GoodPrs .( p.balance pre = p.balance & M ayA ccesspre (sellerMoney , p) ) %
6 #z :pre Object . ( M ayA ccess(escrowMoney , z) !" M ayA ccesspre (escrowMoney , z) ) %
7 #z, y :pre Object . ( M ayA ccess( z, y ) !"
8 ( M ayA ccesspre ( z, y ) & M ayA ccesspre ( sellerMoney , y ) % M ayA ccesspre ( sellerMoney , z ) )
9 !

10 true
11

Figure 7. Hoare tuple for second step indeal

1 true
2 { var escrowMoney := sellerMoney . sprout
3 res := escrowMoney . deposit (0, sellerMoney ) }
4 res !" sellerMoney pre obeysValidPurse '" escrowMoney obeysValidPurse %
5 sellerMoney pre obeysValidPurse !" ( CanT rade (escrowMoney , sellerMoney ) %
6 escrowMoney .balance = 0 %
7 #p $ pre GoodPrs .p.balance pre = p.balance %
8 sellerMoney obeysValidPurse ) %
9 Âres !" Â (sellerMoney pre obeysValidPurse ) %

10 #p :pre GoodPrs .( p.balance pre = p.balance & M ayA ccesspre (sellerMoney , p) ) %
11 #z :pre Object . ( M ayA ccess(escrowMoney , z) !" M ayA ccesspre (sellerMoney , z) ) %
12 #z :pre Object . ( M ayA ccess(sellerMoney , z) !" M ayA ccesspre (sellerMoney , z) ) %
13 #z, y :pre Object . ( M ayA ccess( z, y ) !"
14 ( M ayA ccesspre ( z, y ) & M ayA ccesspre ( sellerMoney , y ) % M ayA ccesspre ( sellerMoney , z ) )
15 !
16 true
17

Figure 8. Hoare tuple for Þrst and second step indeal
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